Journal of High Energy Physics

, 2019:180 | Cite as

Minimally unbalanced quivers

  • Santiago Cabrera
  • Amihay Hanany
  • Anton ZajacEmail author
Open Access
Regular Article - Theoretical Physics


We develop a classification of minimally unbalanced 3d\( \mathcal{N}=4 \) quiver gauge theories. These gauge theories are important because the isometry group G of their Coulomb branch contains a single factor, which is either a classical or an exceptional Lie group. Concurrently, this provides a classification of hyperkähler cones with isometry group G which are obtainable by Coulomb branch constructions. HyperKähler cones such as Coulomb branches of 3d\( \mathcal{N}=4 \) quivers are indispensable tools for describing Higgs branches of different theories in various dimensions. In particular, they are used to describe Higgs branches of 5d\( \mathcal{N}=1 \) SQCD with gauge group SU(Nc) and 6d\( \mathcal{N}=\left(1,0\right) \) SQCD with gauge group Sp(Nc) at the respective UV fixed points.


Global Symmetries Field Theories in Lower Dimensions Supersymmetric Gauge Theory Conformal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  2. [2]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P.C. Argyres, M.R. Plesser and N. Seiberg, The Moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD, Nucl. Phys. B 471 (1996) 159 [hep-th/9603042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Dirac, Quantised singularities in the electromagnetic field, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE] and online pdf version at
  7. [7]
    A. Beauville, Symplectic singularities, Invent. Math. 139 (2000) 541 [math.AG/9903070].
  8. [8]
    E. Brieskorn, Singular Elements of Semi-Simple Algebraic Groups, Actes Congres Intern. Math. 2 (1970) 279.Google Scholar
  9. [9]
    P. Slodowy, Simple Singularities and Simple Algebraic Groups, Springer, Lect. Notes Math. 815 (1980) 1.Google Scholar
  10. [10]
    H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982) 539.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473 [INSPIRE].
  12. [12]
    D.H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold (1993).Google Scholar
  13. [13]
    H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994) 365 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) gauge theories, I, Adv. Theor. Math. Phys. 20 (2016) 595 [arXiv:1503.03676] [INSPIRE].
  15. [15]
    A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) gauge theories, II, arXiv:1601.03586 [INSPIRE].
  16. [16]
    Y. Namikawa, A characterization of nilpotent orbit closures among symplectic singularities, arXiv:1603.06105.
  17. [17]
    U. Lindström, Uses of Sigma Models, in proceedings of the 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2017), Corfu, Greece, 2-28 September 2017, PoS(CORFU2017) 166 (2018) [arXiv:1803.08873] [INSPIRE].
  18. [18]
    G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch at infinite coupling, JHEP 07 (2018) 061 [arXiv:1712.06604] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Hanany and N. Mekareeya, The small E 8 instanton and the Kraft Procesi transition, JHEP 07 (2018) 098 [arXiv:1801.01129] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Cabrera and A. Hanany, Quiver Subtractions, JHEP 09 (2018) 008 [arXiv:1803.11205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Hanany and G. Zafrir, Discrete Gauging in Six Dimensions, JHEP 07 (2018) 168 [arXiv:1804.08857] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP 09 (2010) 063 [arXiv:1007.0992] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, T ρσ(G) theories and their Hilbert series, JHEP 01 (2015) 150 [arXiv:1410.1548] [INSPIRE].
  26. [26]
    S. Cabrera and A. Hanany, Branes and the Kraft-Procesi Transition, JHEP 11 (2016) 175 [arXiv:1609.07798] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Cabrera, A. Hanany and Z. Zhong, Nilpotent orbits and the Coulomb branch of T σ (G) theories: special orthogonal vs orthogonal gauge group factors, JHEP 11 (2017) 079 [arXiv:1707.06941] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition: classical case, JHEP 04 (2018) 127 [arXiv:1711.02378] [INSPIRE].
  29. [29]
    A. Hanany and M. Sperling, Resolutions of nilpotent orbit closures via Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) theories, JHEP 08 (2018) 189 [arXiv:1806.01890] [INSPIRE].
  30. [30]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    V. Borokhov, Monopole operators in three-dimensional N = 4 SYM and mirror symmetry, JHEP 03 (2004) 008 [hep-th/0310254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].
  36. [36]
    A. Hanany and R. Kalveks, Highest Weight Generating Functions for Hilbert Series, JHEP 10 (2014) 152 [arXiv:1408.4690] [INSPIRE].
  37. [37]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Hanany and A. Pini, HWG for Coulomb branch of 3d Sicilian theory mirrors, arXiv:1707.09784 [INSPIRE].
  39. [39]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb Branch and The Moduli Space of Instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D.I. Panyushev, On spherical nilpotent orbits and beyond, Ann. Inst. Fourier 49 (1999) 1453.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Hanany and R. Kalveks, Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits, JHEP 06 (2016) 130 [arXiv:1601.04020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A. Hanany and R. Kalveks, Quiver Theories and Formulae for Nilpotent Orbits of Exceptional Algebras, JHEP 11 (2017) 126 [arXiv:1709.05818] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: a geometric aperçu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Instanton Operators and the Higgs Branch at Infinite Coupling, JHEP 04 (2017) 042 [arXiv:1505.06302] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Hanany and A. Zajac, Discrete Gauging in Coulomb branches of Three Dimensional \( \mathcal{N}=4 \) Supersymmetric Gauge Theories, JHEP 08(2018)158 [arXiv:1807.03221] [INSPIRE].
  46. [46]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].
  47. [47]
    A. Hanany and M. Sperling, Coulomb branches for rank 2 gauge groups in 3d \( \mathcal{N}=4 \) gauge theories, JHEP 08 (2016) 016 [arXiv:1605.00010] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics, The Blackett LaboratoryImperial College LondonLondonUnited Kingdom

Personalised recommendations