Advertisement

Journal of High Energy Physics

, 2019:157 | Cite as

Low scale type II seesaw: present constraints and prospects for displaced vertex searches

  • Stefan Antusch
  • Oliver Fischer
  • A. HammadEmail author
  • Christiane Scherb
Open Access
Regular Article - Theoretical Physics

Abstract

The type II seesaw mechanism is an attractive way to generate the observed light neutrino masses. It postulates a SU(2)L-triplet scalar field, which develops an induced vacuum expectation value after electroweak symmetry breaking, giving masses to the neutrinos via its couplings to the lepton SU(2)L-doublets. When the components of the triplet field have masses around the electroweak scale, the model features a rich phenomenology. We discuss the currently allowed parameter space of the minimal low scale type II seesaw model, taking into account all relevant constraints, including charged lepton flavour violation as well as collider searches. We point out that the symmetry protected low scale type II seesaw scenario, where an approximate “lepton number”-like symmetry suppresses the Yukawa couplings of the triplet to the lepton doublets, is still largely untested by the current LHC results. In part of this parameter space the triplet components can be long-lived, potentially leading to a characteristic displaced vertex signature where the doubly-charged component decays into same-sign charged leptons. By performing a detailed analysis at the reconstructed level we find that already at the current run of the LHC a discovery would be possible for the considered parameter point, via dedicated searches for displaced vertex signatures. The discovery prospects are further improved at the HL-LHC and the FCC-hh/SppC.

Keywords

Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].
  2. [2]
    Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
  3. [3]
    W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. 70B (1977) 433 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. 94B (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  6. [6]
    T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  7. [7]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  8. [8]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P.S.B. Dev, M.J. Ramsey-Musolf and Y. Zhang, Doubly-Charged Scalars in the Type-II Seesaw Mechanism: Fundamental Symmetry Tests and High-Energy Searches, Phys. Rev. D 98 (2018) 055013 [arXiv:1806.08499] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Maiezza, M. Nemevšek and F. Nesti, Lepton Number Violation in Higgs Decay at LHC, Phys. Rev. Lett. 115 (2015) 081802 [arXiv:1503.06834] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Nemevšek, F. Nesti and J.C. Vasquez, Majorana Higgses at colliders, JHEP 04 (2017) 114 [arXiv:1612.06840] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  14. [14]
    A.G. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72 (2005) 035011 [hep-ph/0506176] [INSPIRE].
  15. [15]
    P. Fileviez Perez, T. Han, G.-y. Huang, T. Li and K. Wang, Neutrino Masses and the CERN LHC: Testing Type II Seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II Seesaw at LHC: The Roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].ADSGoogle Scholar
  17. [17]
    F.F. Freitas, C.A. de S. Pires and P.S. Rodrigues da Silva, Inverse type-II seesaw mechanism and its signature at the LHC and ILC, Phys. Lett. B 769 (2017) 48 [arXiv:1408.5878] [INSPIRE].
  18. [18]
    D.K. Ghosh, N. Ghosh, I. Saha and A. Shaw, Revisiting the high-scale validity of the type-II seesaw model with novel LHC signature, Phys. Rev. D 97 (2018) 115022 [arXiv:1711.06062] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Du, A. Dunbrack, M.J. Ramsey-Musolf and J.-H. Yu, Type-II Seesaw Scalar Triplet Model at a 100 TeV pp Collider: Discovery and Higgs Portal Coupling Determination, JHEP 01 (2019) 101 [arXiv:1810.09450] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    ATLAS collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070] [INSPIRE].
  21. [21]
    CMS collaboration, Inclusive search for doubly charged Higgs in leptonic final states at sqrt s=7 TeV, CMS-PAS-HIG-11-007 (2011).
  22. [22]
    ATLAS collaboration, Search for anomalous production of prompt same-sign lepton pairs and pair-produced doubly charged Higgs bosons with \( \sqrt{s}=8 \) TeV pp collisions using the ATLAS detector, JHEP 03 (2015) 041 [arXiv:1412.0237] [INSPIRE].
  23. [23]
    CMS collaboration, Search for a doubly-charged Higgs boson with \( \sqrt{s}=8 \) TeV pp collisions at the CMS experiment, CMS-PAS-HIG-14-039 (2014).
  24. [24]
    ATLAS collaboration, Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 199 [arXiv:1710.09748] [INSPIRE].
  25. [25]
    CMS collaboration, A search for doubly-charged Higgs boson production in three and four lepton final states at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-036 (2016).
  26. [26]
    OPAL collaboration, Search for doubly charged Higgs bosons with the OPAL detector at LEP, Phys. Lett. B 526 (2002) 221 [hep-ex/0111059] [INSPIRE].
  27. [27]
    DELPHI collaboration, Search for doubly charged Higgs bosons at LEP-2, Phys. Lett. B 552 (2003) 127 [hep-ex/0303026] [INSPIRE].
  28. [28]
    L3 collaboration, Search for doubly charged Higgs bosons at LEP, Phys. Lett. B 576 (2003) 18 [hep-ex/0309076] [INSPIRE].
  29. [29]
    CDF collaboration, Search for doubly-charged Higgs bosons decaying to dileptons in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 93 (2004) 221802 [hep-ex/0406073] [INSPIRE].
  30. [30]
    CDF collaboration, Search for Doubly Charged Higgs Bosons with Lepton-Flavor-Violating Decays involving Tau Leptons, Phys. Rev. Lett. 101 (2008) 121801 [arXiv:0808.2161] [INSPIRE].
  31. [31]
    D0 collaboration, Search for pair production of doubly-charged Higgs bosons in the H ++ H −−μ + μ + μ μ final state at D0, Phys. Rev. Lett. 101 (2008) 071803 [arXiv:0803.1534] [INSPIRE].
  32. [32]
    D0 collaboration, Search for doubly-charged Higgs boson pair production in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 108 (2012) 021801 [arXiv:1106.4250] [INSPIRE].
  33. [33]
    ATLAS collaboration, Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector, Eur. Phys. J. C 79 (2019) 58 [arXiv:1808.01899] [INSPIRE].
  34. [34]
    A. Blondel et al., Research Proposal for an Experiment to Search for the Decay μeee, arXiv:1301.6113 [INSPIRE].
  35. [35]
    R.J. Barlow, The PRISM/PRIME project, Nucl. Phys. Proc. Suppl. 218 (2011) 44 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    mu2e collaboration, Feasibility Study for a Next-Generation Mu2e Experiment, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, U.S.A., July 29 – August 6, 2013, arXiv:1307.1168 [INSPIRE].
  37. [37]
    C.A. de S. Pires, Explicitly broken lepton number at low energy in the Higgs triplet model, Mod. Phys. Lett. A 21 (2006) 971 [hep-ph/0509152] [INSPIRE].
  38. [38]
    P. Agrawal, M. Mitra, S. Niyogi, S. Shil and M. Spannowsky, Probing the Type-II Seesaw Mechanism through the Production of Higgs Bosons at a Lepton Collider, Phys. Rev. D 98 (2018) 015024 [arXiv:1803.00677] [INSPIRE].ADSGoogle Scholar
  39. [39]
    ATLAS collaboration, Search for long-lived, multi-charged particles in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Lett. B 722 (2013) 305 [arXiv:1301.5272] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for heavy long-lived multi-charged particles in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Eur. Phys. J. C 75 (2015) 362 arXiv:1504.04188] [INSPIRE].
  41. [41]
    CMS collaboration, Search for long-lived charged particles in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 94 (2016) 112004 [arXiv:1609.08382] [INSPIRE].
  42. [42]
    CDF collaboration, Search for long-lived doubly-charged Higgs bosons in pp collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 95 (2005) 071801 [hep-ex/0503004] [INSPIRE].
  43. [43]
    P.S. Bhupal Dev and Y. Zhang, Displaced vertex signatures of doubly charged scalars in the type-II seesaw and its left-right extensions, JHEP 10 (2018) 199 [arXiv:1808.00943] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  45. [45]
    J. Tang et al., Concept for a Future Super Proton-Proton Collider, arXiv:1507.03224 [INSPIRE].
  46. [46]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  48. [48]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  49. [49]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    NuFIT 3.2, (2018), www.nu-fit.org.
  51. [51]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  52. [52]
    M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [INSPIRE].
  53. [53]
    SINDRUM collaboration, Search for the Decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].
  54. [54]
    MEG collaboration, Search for the lepton flavour violating decay μ + → e+ γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  55. [55]
    A.G. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays \( \tau \to \overline{l}ll \) and μeγ in the Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [INSPIRE].ADSGoogle Scholar
  56. [56]
    D.N. Dinh, A. Ibarra, E. Molinaro and S.T. Petcov, The μe Conversion in Nuclei, μeγ, μ → 3e Decays and TeV Scale See-Saw Scenarios of Neutrino Mass Generation, JHEP 08 (2012) 125 [Erratum ibid. 09 (2013) 023] [arXiv:1205.4671] [INSPIRE].
  57. [57]
    P.S.B. Dev, C.M. Vila and W. Rodejohann, Naturalness in testable type-II seesaw scenarios, Nucl. Phys. B 921 (2017) 436 [arXiv:1703.00828] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  59. [59]
    P.S. Bhupal Dev, D.K. Ghosh, N. Okada and I. Saha, 125 GeV Higgs Boson and the Type-II Seesaw Model, JHEP 03 (2013) 150 [Erratum ibid. 05 (2013) 049] [arXiv:1301.3453] [INSPIRE].
  60. [60]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν τ in the τ +jets and τ +lepton final states with 36 fb −1 of pp collision data recorded at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, JHEP 09 (2018) 139 [arXiv:1807.07915] [INSPIRE].
  61. [61]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).
  62. [62]
    A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II Seesaw Model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    ALEPH collaboration, Search for pair production of longlived heavy charged particles in e + e annihilation, Phys. Lett. B 405 (1997) 379 [hep-ex/9706013] [INSPIRE].
  64. [64]
    DELPHI collaboration, Search for heavy stable and longlived particles in e + e collisions at \( \sqrt{s}=189 \) GeV, Phys. Lett. B 478 (2000) 65 [hep-ex/0103038] [INSPIRE].
  65. [65]
    OPAL collaboration, Search for stable and longlived massive charged particles in e + e collisions at \( \sqrt{s}=130 \) GeV to 209-GeV, Phys. Lett. B 572 (2003) 8 [hep-ex/0305031] [INSPIRE].
  66. [66]
    ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].
  67. [67]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  69. [69]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  70. [70]
    D.G. Cerdeño, V. Martín-Lozano and O. Seto, Displaced vertices and long-lived charged particles in the NMSSM with right-handed sneutrinos, JHEP 05 (2014) 035 [arXiv:1311.7260] [INSPIRE].
  71. [71]
    ATLAS collaboration, Search for long-lived, heavy particles in final states with a muon and multi-track displaced vertex in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 280 [arXiv:1210.7451] [INSPIRE].
  72. [72]
    W. Abdallah, A. Hammad, A. Kasem and S. Khalil, Long-lived B-L symmetric SSM particles at the LHC, Phys. Rev. D 98 (2018) 095019 [arXiv:1804.09778] [INSPIRE].ADSGoogle Scholar
  73. [73]
    S. Kanemura, K. Yagyu and H. Yokoya, First constraint on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario at the LHC, Phys. Lett. B 726 (2013) 316 [arXiv:1305.2383] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    Z. Kang, J. Li, T. Li, Y. Liu and G.-Z. Ning, Light Doubly Charged Higgs Boson via the WW * Channel at LHC, Eur. Phys. J. C 75 (2015) 574 [arXiv:1404.5207] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J. Alwall, C. Duhr, B. Fuks, O. Mattelaer, D.G. Öztürk and C.-H. Shen, Computing decay rates for new physics theories with FeynRules and MadGraph 5_aMC@NLO, Comput. Phys. Commun. 197 (2015) 312 [arXiv:1402.1178] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Stefan Antusch
    • 1
  • Oliver Fischer
    • 2
  • A. Hammad
    • 1
    Email author
  • Christiane Scherb
    • 1
  1. 1.Department of PhysicsUniversity of BaselBaselSwitzerland
  2. 2.Institute for Nuclear PhysicsKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations