Event-Shape Engineering for the D-meson elliptic flow in mid-central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV

Abstract

The production yield of prompt D mesons and their elliptic flow coefficient v2 were measured with the Event-Shape Engineering (ESE) technique applied to mid-central (10–30% and 30–50% centrality classes) Pb-Pb collisions at the centre-of-mass energy per nucleon pair \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, with the ALICE detector at the LHC. The ESE technique allows the classification of events, belonging to the same centrality, according to the azimuthal anisotropy of soft particle production in the collision. The reported measurements give the opportunity to investigate the dynamics of charm quarks in the Quark-Gluon Plasma and provide information on their participation in the collective expansion of the medium. D mesons were reconstructed via their hadronic decays at mid-rapidity, |η| < 0.8, in the transverse momentum interval 1 < pT < 24 GeV/c. The v2 coefficient is found to be sensitive to the event-shape selection confirming a correlation between the D-meson azimuthal anisotropy and the collective expansion of the bulk matter, while the per-event D-meson yields do not show any significant modification within the current uncertainties.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F. Karsch, Lattice simulations of the thermodynamics of strongly interacting elementary particles and the exploration of new phases of matter in relativistic heavy ion collisions, J. Phys. Conf. Ser. 46 (2006) 122 [hep-lat/0608003] [INSPIRE].

  2. [2]

    Wuppertal-Budapest collaboration, Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].

  3. [3]

    HotQCD collaboration, The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

  4. [4]

    W. Florkowski, R. Ryblewski, N. Su and K. Tywoniuk, Strong-coupling effects in a plasma of confining gluons, Nucl. Phys. A 956 (2016) 669 [arXiv:1512.06402] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett. 106 (2011) 192301 [Erratum ibid. 109 (2012) 139904] [arXiv:1011.2783] [INSPIRE].

  6. [6]

    Z. Qiu, C. Shen and U. Heinz, Hydrodynamic elliptic and triangular flow in Pb-Pb collisions at \( \sqrt{s}=2.76 \) A TeV, Phys. Lett. B 707 (2012) 151 [arXiv:1110.3033] [INSPIRE].

  7. [7]

    C. Gale, S. Jeon, B. Schenke, P. Tribedy and R. Venugopalan, Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics, Phys. Rev. Lett. 110 (2013) 012302 [arXiv:1209.6330] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    STAR collaboration, Azimuthal anisotropy in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 72 (2005) 014904 [nucl-ex/0409033] [INSPIRE].

  9. [9]

    PHOBOS collaboration, System size, energy, pseudorapidity and centrality dependence of elliptic flow, Phys. Rev. Lett. 98 (2007) 242302 [nucl-ex/0610037] [INSPIRE].

  10. [10]

    ALICE collaboration, Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 107 (2011) 032301 [arXiv:1105.3865] [INSPIRE].

  11. [11]

    F.-M. Liu and S.-X. Liu, Quark-gluon plasma formation time and direct photons from heavy ion collisions, Phys. Rev. C 89 (2014) 034906 [arXiv:1212.6587] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    P. Braun-Munzinger, Quarkonium production in ultra-relativistic nuclear collisions: suppression versus enhancement, J. Phys. G 34 (2007) S471 [nucl-th/0701093] [INSPIRE].

  13. [13]

    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    G. Aarts et al., Heavy-flavor production and medium properties in high-energy nuclear collisions — what next?, Eur. Phys. J. A 53 (2017) 93 [arXiv:1612.08032] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    M. Gyulassy and M. Plumer, Jet quenching in dense matter, Phys. Lett. B 243 (1990) 432 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and p T broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

  17. [17]

    F. Prino and R. Rapp, Open heavy flavor in QCD matter and in nuclear collisions, J. Phys. G 43 (2016) 093002 [arXiv:1603.00529] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    E. Braaten and M.H. Thoma, Energy loss of a heavy quark in the quark-gluon plasma, Phys. Rev. D 44 (1991) R2625 [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    V. Greco, C.M. Ko and P. Levai, Parton coalescence at RHIC, Phys. Rev. C 68 (2003) 034904 [nucl-th/0305024] [INSPIRE].

  20. [20]

    A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Statistical hadronization of charm in heavy ion collisions at SPS, RHIC and LHC, Phys. Lett. B 571 (2003) 36 [nucl-th/0303036] [INSPIRE].

  21. [21]

    S. Plumari, V. Minissale, S.K. Das, G. Coci and V. Greco, Charmed hadrons from coalescence plus fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC, Eur. Phys. J. C 78 (2018) 348 [arXiv:1712.00730] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    PHENIX collaboration, Heavy quark production in p+p and energy loss and flow of heavy quarks in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 84 (2011) 044905 [arXiv:1005.1627] [INSPIRE].

  23. [23]

    STAR collaboration, Transverse momentum and centrality dependence of high-p T non-photonic electron suppression in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 98 (2007) 192301 [Erratum ibid. 106 (2011) 159902] [nucl-ex/0607012] [INSPIRE].

  24. [24]

    STAR collaboration, Observation of D 0 meson nuclear modifications in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 113 (2014) 142301 [Erratum ibid. 121 (2018) 229901] [arXiv:1404.6185] [INSPIRE].

  25. [25]

    PHENIX collaboration, Nuclear modification of electron spectra and implications for heavy quark energy loss in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 96 (2006) 032301 [nucl-ex/0510047] [INSPIRE].

  26. [26]

    ALICE collaboration, Transverse momentum dependence of D-meson production in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, JHEP 03 (2016) 081 [arXiv:1509.06888] [INSPIRE].

  27. [27]

    ALICE collaboration, Production of muons from heavy flavour decays at forward rapidity in pp and Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 109 (2012) 112301 [arXiv:1205.6443] [INSPIRE].

  28. [28]

    ALICE collaboration, Measurement of the production of high-p T electrons from heavy-flavour hadron decays in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 771 (2017) 467 [arXiv:1609.07104] [INSPIRE].

  29. [29]

    ALICE collaboration, Measurement of electrons from beauty-hadron decays in p-Pb collisions at \( \sqrt{s_{NN}}=5.02 \) TeV and Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, JHEP 07 (2017) 052 [arXiv:1609.03898] [INSPIRE].

  30. [30]

    CMS collaboration, Suppression and azimuthal anisotropy of prompt and nonprompt J/ψ production in PbPb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Eur. Phys. J. C 77 (2017) 252 [arXiv:1610.00613] [INSPIRE].

  31. [31]

    CMS collaboration, Nuclear modification factor of D 0 mesons in PbPb collisions at \( \sqrt{s_{NN}}=5.02 \) TeV, Phys. Lett. B 782 (2018) 474 [arXiv:1708.04962] [INSPIRE].

  32. [32]

    ALICE collaboration, Measurement of D 0 , D + , D *+ and D +s production in Pb-Pb collisions at \( \sqrt{s_{NN}}=5.02 \) TeV, JHEP 10 (2018) 174 [arXiv:1804.09083] [INSPIRE].

  33. [33]

    J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46 (1992) 229 [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions, Z. Phys. C 70 (1996) 665 [hep-ph/9407282] [INSPIRE].

  35. [35]

    A.M. Poskanzer and S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58 (1998) 1671 [nucl-ex/9805001] [INSPIRE].

  36. [36]

    G.-Y. Qin, H. Petersen, S.A. Bass and B. Müller, Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions, Phys. Rev. C 82 (2010) 064903 [arXiv:1009.1847] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    S. Batsouli, S. Kelly, M. Gyulassy and J.L. Nagle, Does the charm flow at RHIC?, Phys. Lett. B 557 (2003) 26 [nucl-th/0212068] [INSPIRE].

  38. [38]

    D. Molnar, Charm elliptic flow from quark coalescence dynamics, J. Phys. G 31 (2005) S421 [nucl-th/0410041] [INSPIRE].

  39. [39]

    V. Greco, C.M. Ko and R. Rapp, Quark coalescence for charmed mesons in ultrarelativistic heavy ion collisions, Phys. Lett. B 595 (2004) 202 [nucl-th/0312100] [INSPIRE].

  40. [40]

    M. Gyulassy, I. Vitev and X.N. Wang, High p T azimuthal asymmetry in noncentral A+A at RHIC, Phys. Rev. Lett. 86 (2001) 2537 [nucl-th/0012092] [INSPIRE].

  41. [41]

    E.V. Shuryak, The azimuthal asymmetry at large p T seem to be too large for a ‘jet quenching’, Phys. Rev. C 66 (2002) 027902 [nucl-th/0112042] [INSPIRE].

  42. [42]

    STAR collaboration, Elliptic flow of electrons from heavy-flavor hadron decays in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) , 62.4 and 39 GeV, Phys. Rev. C 95 (2017) 034907 [arXiv:1405.6348] [INSPIRE].

  43. [43]

    STAR collaboration, Measurement of D 0 azimuthal anisotropy at midrapidity in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 118 (2017) 212301 [arXiv:1701.06060] [INSPIRE].

  44. [44]

    ALICE collaboration, D meson elliptic flow in non-central Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 111 (2013) 102301 [arXiv:1305.2707] [INSPIRE].

  45. [45]

    ALICE collaboration, Azimuthal anisotropy of D meson production in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. C 90 (2014) 034904 [arXiv:1405.2001] [INSPIRE].

  46. [46]

    ALICE collaboration, Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, JHEP 09 (2016) 028 [arXiv:1606.00321] [INSPIRE].

  47. [47]

    ALICE collaboration, Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 753 (2016) 41 [arXiv:1507.03134] [INSPIRE].

  48. [48]

    ALICE collaboration, D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at \( \sqrt{s_{NN}}=5.02 \) TeV, Phys. Rev. Lett. 120 (2018) 102301 [arXiv:1707.01005] [INSPIRE].

  49. [49]

    CMS collaboration, Measurement of prompt D 0 meson azimuthal anisotropy in Pb-Pb collisions at \( \sqrt{s_{NN}}=5.02 \) TeV, Phys. Rev. Lett. 120 (2018) 202301 [arXiv:1708.03497] [INSPIRE].

  50. [50]

    J. Uphoff, O. Fochler, Z. Xu and C. Greiner, Open heavy flavor in Pb+Pb collisions at \( \sqrt{s}=2.76 \) TeV within a transport model, Phys. Lett. B 717 (2012) 430 [arXiv:1205.4945] [INSPIRE].

  51. [51]

    M. He, R.J. Fries and R. Rapp, Heavy flavor at the Large Hadron Collider in a strong coupling approach, Phys. Lett. B 735 (2014) 445 [arXiv:1401.3817] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    M. Monteno et al., Heavy-flavor dynamics in nucleus-nucleus collisions: from RHIC to LHC, J. Phys. G 38 (2011) 124144 [arXiv:1107.0256] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    M. Djordjevic and M. Djordjevic, Predictions of heavy-flavor suppression at 5.1 TeV Pb+Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 92 (2015) 024918 [arXiv:1505.04316] [INSPIRE].

  54. [54]

    S. Cao, G.-Y. Qin and S.A. Bass, Heavy-quark dynamics and hadronization in ultrarelativistic heavy-ion collisions: collisional versus radiative energy loss, Phys. Rev. C 88 (2013) 044907 [arXiv:1308.0617] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    T. Song, H. Berrehrah, D. Cabrera, W. Cassing and E. Bratkovskaya, Charm production in Pb+Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 93 (2016) 034906 [arXiv:1512.00891] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    M. Nahrgang, J. Aichelin, P.B. Gossiaux and K. Werner, Influence of hadronic bound states above T c on heavy-quark observables in Pb+Pb collisions at at the CERN Large Hadron Collider, Phys. Rev. C 89 (2014) 014905 [arXiv:1305.6544] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    J. Uphoff, O. Fochler, Z. Xu and C. Greiner, Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions, J. Phys. G 42 (2015) 115106 [arXiv:1408.2964] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    A. Beraudo, A. De Pace, M. Monteno, M. Nardi and F. Prino, Heavy flavors in heavy-ion collisions: quenching, flow and correlations, Eur. Phys. J. C 75 (2015) 121 [arXiv:1410.6082] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang, Heavy and light flavor jet quenching at RHIC and LHC energies, Phys. Lett. B 777 (2018) 255 [arXiv:1703.00822] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev. C 71 (2005) 064904 [hep-ph/0412346] [INSPIRE].

  61. [61]

    J. Schukraft, A. Timmins and S.A. Voloshin, Ultra-relativistic nuclear collisions: event shape engineering, Phys. Lett. B 719 (2013) 394 [arXiv:1208.4563] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    ALICE collaboration, Event shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. C 93 (2016) 034916 [arXiv:1507.06194] [INSPIRE].

  63. [63]

    ATLAS collaboration, Measurement of the correlation between flow harmonics of different order in lead-lead collisions at \( \sqrt{s_{NN}}=2.76 \) TeV with the ATLAS detector, Phys. Rev. C 92 (2015) 034903 [arXiv:1504.01289] [INSPIRE].

  64. [64]

    ALICE collaboration, Constraining the magnitude of the chiral magnetic effect with event shape engineering in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 777 (2018) 151 [arXiv:1709.04723] [INSPIRE].

  65. [65]

    CMS collaboration, Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 044912 [arXiv:1708.01602] [INSPIRE].

  66. [66]

    ALICE collaboration, Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 719 (2013) 18 [arXiv:1205.5761] [INSPIRE].

  67. [67]

    U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    F.G. Gardim, F. Grassi, M. Luzum and J.-Y. Ollitrault, Characterizing the hydrodynamic response to the initial conditions, Nucl. Phys. A 904-905 (2013) 503c [arXiv:1210.8422] [INSPIRE].

  69. [69]

    S.A. Voloshin, A.M. Poskanzer and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt-Bornstein 23 (2010) 293 [arXiv:0809.2949] [INSPIRE].

    ADS  Google Scholar 

  70. [70]

    W. Ke, Y. Xu and S.A. Bass, Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter, Phys. Rev. C 98 (2018) 064901 [arXiv:1806.08848] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    C.A.G. Prado et al., Event-by-event correlations between soft hadrons and D 0 mesons in 5.02 TeV Pb-Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 96 (2017) 064903 [arXiv:1611.02965] [INSPIRE].

  72. [72]

    P.B. Gossiaux, J. Aichelin, M. Nahrgang, V. Ozvenchuk and K. Werner, Global view on coupled dynamics of heavy and light flavor observables from EPOSHQ, Nucl. Phys. A 967 (2017) 672 [arXiv:1705.02271] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  74. [74]

    ALICE collaboration, Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  75. [75]

    R.J. Glauber and G. Matthiae, High-energy scattering of protons by nuclei, Nucl. Phys. B 21 (1970) 135 [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025] [INSPIRE].

  77. [77]

    ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  78. [78]

    STAR collaboration, Elliptic flow from two and four particle correlations in Au+Au collisions at \( \sqrt{s_{NN}}=130 \) GeV, Phys. Rev. C 66 (2002) 034904 [nucl-ex/0206001] [INSPIRE].

  79. [79]

    I. Selyuzhenkov and S. Voloshin, Effects of non-uniform acceptance in anisotropic flow measurement, Phys. Rev. C 77 (2008) 034904 [arXiv:0707.4672] [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  81. [81]

    R. Brun, F. Carminati and S. Giani, CERN program library long write-up, W5013 GEANT detector description and simulation tool, tech. rep. CERN-W-5013, CERN, Geneva, Switzerland (1994) [INSPIRE].

  82. [82]

    X.-N. Wang and M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in pp, pA and AA collisions, Phys. Rev. D 44 (1991) 3501 [INSPIRE].

    ADS  Google Scholar 

  83. [83]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  84. [84]

    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  85. [85]

    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].

  86. [86]

    M. Cacciari, S. Frixione and P. Nason, The p T spectrum in heavy flavor photoproduction, JHEP 03 (2001) 006 [hep-ph/0102134] [INSPIRE].

  87. [87]

    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    ALICE collaboration, Centrality dependence of high-p T D meson suppression in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, JHEP 11 (2015) 205 [Addendum ibid. 06 (2017) 032] [arXiv:1506.06604] [INSPIRE].

  89. [89]

    J. Aichelin, P.B. Gossiaux and T. Gousset, Radiative and collisional energy loss of heavy quarks in deconfined matter, Acta Phys. Polon. B 43 (2012) 655 [arXiv:1201.4192] [INSPIRE].

    Article  Google Scholar 

  90. [90]

    V. Greco, H. van Hees and R. Rapp, Heavy-quark kinetics at RHIC and LHC, in Nuclear physics. Proceedings, 23rd International Conference, INPC 2007, Tokyo, Japan, 3–8 June 2007 [arXiv:0709.4452] [INSPIRE].

  91. [91]

    ALICE collaboration, Anisotropic flow of identified particles in Pb-Pb collisions at \( \sqrt{s_{NN}}=5.02 \) TeV, JHEP 09 (2018) 006 [arXiv:1805.04390] [INSPIRE].

  92. [92]

    ALICE collaboration, Elliptic flow of identified hadrons in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, JHEP 06 (2015) 190 [arXiv:1405.4632] [INSPIRE].

  93. [93]

    ALICE collaboration, Technical design report for the upgrade of the ALICE inner tracking system, J. Phys. G 41 (2014) 087002 [INSPIRE].

  94. [94]

    ALICE collaboration, Upgrade of the ALICE experiment: letter of intent, J. Phys. G 41 (2014) 087001 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors