Advertisement

Journal of High Energy Physics

, 2019:113 | Cite as

Nilpotent orbit Coulomb branches of types AD

  • Amihay Hanany
  • Dominik MiketaEmail author
Open Access
Regular Article - Theoretical Physics
  • 47 Downloads

Abstract

We develop a new method for constructing 3d\( \mathcal{N}=4 \) Coulomb branch chiral rings in terms of gauge-invariant generators and relations while making the global symmetry manifest. Our examples generalise to all balanced quivers of type A and D whose Coulomb branches are closures of nilpotent orbits. This new approach is a synthesis of operator counting using Hilbert series and explicit algebraic construction introduced by Bullimore, Dimofte and Gaiotto with significant potential for further generalisation to other quivers, including non-simply laced. The method also identifies complex mass deformations of many Coulomb branches, providing an explicit construction for complex deformations of nilpotent orbits.

Keywords

Field Theories in Lower Dimensions Global Symmetries Solitons Monopoles and Instantons Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch at infinite coupling, JHEP 07 (2018) 061 [arXiv:1712.06604] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Instanton Operators and the Higgs Branch at Infinite Coupling, JHEP 04 (2017) 042 [arXiv:1505.06302] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].
  4. [4]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].
  5. [5]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].
  6. [6]
    V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
  9. [9]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].
  10. [10]
    A. Hanany and M. Sperling, Algebraic properties of the monopole formula, JHEP 02 (2017) 023 [arXiv:1611.07030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Hanany and R. Kalveks, Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits, JHEP 06 (2016) 130 [arXiv:1601.04020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Hanany and R. Kalveks, Quiver Theories and Formulae for Nilpotent Orbits of Exceptional Algebras, JHEP 11 (2017) 126 [arXiv:1709.05818] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Braverman, M. Finkelberg and H. Nakajima, Coulomb branches of 3d \( \mathcal{N}=4 \) quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster and Alex Weekes), arXiv:1604.03625 [INSPIRE].
  14. [14]
    A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) gauge theories, II, arXiv:1601.03586 [INSPIRE].
  15. [15]
    M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb Branch of 3d \( \mathcal{N}=4 \) Theories, Commun. Math. Phys. 354 (2017) 671 [arXiv:1503.04817] [INSPIRE].
  16. [16]
    M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn and H.-C. Kim, Vortices and Vermas, Adv. Theor. Math. Phys. 22 (2018) 803 [arXiv:1609.04406] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    B. Assel, Ring Relations and Mirror Map from Branes, JHEP 03 (2017) 152 [arXiv:1701.08766] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    B. Assel and S. Cremonesi, The Infrared Physics of Bad Theories, SciPost Phys. 3 (2017) 024 [arXiv:1707.03403] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Assel and S. Cremonesi, The Infrared Fixed Points of 3d \( \mathcal{N} = 4 \) USp(2N) SQCD Theories, SciPost Phys. 5 (2018) 015 [arXiv:1802.04285] [INSPIRE].
  20. [20]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb Branch and The Moduli Space of Instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T. Dimofte and N. Garner, Coulomb Branches of Star-Shaped Quivers, arXiv:1808.05226 [INSPIRE].
  22. [22]
    D.I. Panyushev, On spherical nilpotent orbits and beyond, Ann. Inst. Fourier 49 (1999) 1453.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Hanany and M. Sperling, Resolutions of nilpotent orbit closures via Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) theories, JHEP 08 (2018) 189 [arXiv:1806.01890] [INSPIRE].
  24. [24]
    S. Cremonesi, 3d supersymmetric gauge theories and Hilbert series, Proc. Symp. Pure Math. 98 (2018) 21 [arXiv:1701.00641] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    P. Goddard and D.I. Olive, New developments in the theory of magnetic monopoles, Rept. Prog. Phys. 41 (1978) 1357 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    J. Fuchs and C. Schweigert, Symmetries, Lie algebras and representations: A graduate course for physicists, Cambridge University Press, Cambridge U.K. (2003).zbMATHGoogle Scholar
  29. [29]
    A. Hanany and A. Zajac, Discrete Gauging in Coulomb branches of Three Dimensional \( \mathcal{N}=4 \) Supersymmetric Gauge Theories, JHEP 08 (2018) 158 [arXiv:1807.03221] [INSPIRE].
  30. [30]
    S. Cabrera and A. Hanany, Quiver Subtractions, JHEP 09 (2018) 008 [arXiv:1803.11205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics, The Blackett LaboratoryImperial College LondonLondonU.K.

Personalised recommendations