Advertisement

Journal of High Energy Physics

, 2019:82 | Cite as

An anomaly-free atlas: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model

  • B. C. Allanach
  • Joe DavighiEmail author
  • Scott Melville
Open Access
Regular Article - Theoretical Physics

Abstract

Spontaneously broken, flavour-dependent, gauged U(1) extensions of the Standard Model (SM) have many phenomenological uses. We chart the space of solutions to the gauge anomaly cancellation equations in such extensions, for both the SM chiral fermion content and the SM plus (up to) three right-handed neutrinos (SMνR). Methods from Diophantine analysis allow us to efficiently index the solutions arithmetically, and produce the complete solution space in particular cases. In order to solve the general case, we build a computer program which cycles through possible U(1) charge assignments, providing all solutions for charges up to some pre-defined maximum absolute charge. Lists of anomaly-free U(1) charge assignments result, which corroborate the results of our Diophantine analysis. We make these lists, which may be queried for further desirable properties, publicly available. This previously uncharted space of anomaly-free charge assignments has been little explored until now, paving the way for future model building and phenomenological studies.

Keywords

Beyond Standard Model Effective Field Theories Quark Masses and SM Parameters 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Okada and O. Seto, Higgs portal dark matter in the minimal gauged U(1)BL model, Phys. Rev. D 82 (2010) 023507 [arXiv:1002.2525] [INSPIRE].ADSGoogle Scholar
  2. [2]
    B. Allanach, F.S. Queiroz, A. Strumia and S. Sun, Zmodels for the LHCb and g − 2 muon anomalies, Phys. Rev. D 93 (2016) 055045 [Erratum ibid. D 95 (2017) 119902] [arXiv:1511.07447] [INSPIRE].
  3. [3]
    N. Okada and S. Okada, Z-portal right-handed neutrino dark matter in the minimal U(1)X extended Standard Model, Phys. Rev. D 95 (2017) 035025 [arXiv:1611.02672] [INSPIRE].ADSGoogle Scholar
  4. [4]
    N. Okada and S. Okada, Z BL portal dark matter and LHC run-2 results, Phys. Rev. D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE].
  5. [5]
    N. Okada, S. Okada and D. Raut, SU(5) × U(1)X grand unification with minimal seesaw and Z-portal dark matter, Phys. Lett. B 780 (2018) 422 [arXiv:1712.05290] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi and F. Takahashi, Relic abundance of dark photon dark matter, arXiv:1810.07188 [INSPIRE].
  7. [7]
    N. Okada, S. Okada and D. Raut, A natural Z-portal Majorana dark matter in alternative U(1) extended Standard Model, arXiv:1811.11927 [INSPIRE].
  8. [8]
    J. Heeck and W. Rodejohann, Gauged L μ -L τ symmetry at the electroweak scale, Phys. Rev. D 84 (2011) 075007 [arXiv:1107.5238] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Berenstein and E. Perkins, A viable axion from gauged flavor symmetries, Phys. Rev. D 82 (2010) 107701 [arXiv:1003.4233] [INSPIRE].
  10. [10]
    M.-C. Chen, J. Huang and W. Shepherd, Dirac leptogenesis with a non-anomalous U(1)′ family symmetry, JHEP 11 (2012) 059 [arXiv:1111.5018] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C.D. Carone, L.J. Hall and H. Murayama, A supersymmetric theory of flavor and R-parity, Phys. Rev. D 54 (1996) 2328 [hep-ph/9602364] [INSPIRE].
  12. [12]
    D.E. Kaplan and G.D. Kribs, Phenomenology of flavor mediated supersymmetry breaking, Phys. Rev. D 61 (2000) 075011 [hep-ph/9906341] [INSPIRE].
  13. [13]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  15. [15]
    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  16. [16]
    G. Hiller and F. Krüger, More model-independent analysis of bs processes, Phys. Rev. D 69 (2004) 074020 [hep-ph/0310219] [INSPIRE].
  17. [17]
    R. Gauld, F. Goertz and U. Haisch, On minimal Z explanations of the BK * μ + μ anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A.J. Buras, F. De Fazio and J. Girrbach, 331 models facing new b + μ data, JHEP 02 (2014) 112 [arXiv:1311.6729] [INSPIRE].
  19. [19]
    A.J. Buras and J. Girrbach, Left-handed Zand Z FCNC quark couplings facing new b + μ data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].
  20. [20]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μ -L τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A.J. Buras, F. De Fazio and J. Girrbach-Noe, Z-Zmixing and Z-mediated FCNCs in SU(3)C × SU(3)L × U(1)X models, JHEP 08 (2014) 039 [arXiv:1405.3850] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining hμ ± τ , BK * μ + μ and B + μ /BKe + e in a two-Higgs-doublet model with gauged L μ -L τ, Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries, Phys. Rev. D 91 (2015) 075006 [arXiv:1503.03477] [INSPIRE].ADSGoogle Scholar
  24. [24]
    D. Aristizabal Sierra, F. Staub and A. Vicente, Shedding light on the bs anomalies with a dark sector, Phys. Rev. D 92 (2015) 015001 [arXiv:1503.06077] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Crivellin, L. Hofer, J. Matias, U. Nierste, S. Pokorski and J. Rosiek, Lepton-flavour violating B decays in generic Zmodels, Phys. Rev. D 92 (2015) 054013 [arXiv:1504.07928] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Celis, J. Fuentes-Martin, M. Jung and H. Serodio, Family nonuniversal Zmodels with protected flavor-changing interactions, Phys. Rev. D 92 (2015) 015007 [arXiv:1505.03079] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Greljo, G. Isidori and D. Marzocca, On the breaking of lepton flavor universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    W. Altmannshofer and I. Yavin, Predictions for lepton flavor universality violation in rare B decays in models with gauged L μ -L τ, Phys. Rev. D 92 (2015) 075022 [arXiv:1508.07009] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Falkowski, M. Nardecchia and R. Ziegler, Lepton flavor non-universality in B-meson decays from a U(2) flavor model, JHEP 11 (2015) 173 [arXiv:1509.01249] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C.-W. Chiang, X.-G. He and G. Valencia, Zmodel for b\( s\ell \overline{\ell} \) flavor anomalies, Phys. Rev. D 93 (2016) 074003 [arXiv:1601.07328] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D. Bečirević, O. Sumensari and R. Zukanovich Funchal, Lepton flavor violation in exclusive bs decays, Eur. Phys. J. C 76 (2016) 134 [arXiv:1602.00881] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Non-Abelian gauge extensions for B-decay anomalies, Phys. Lett. B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Ko, Y. Omura, Y. Shigekami and C. Yu, LHCb anomaly and B physics in flavored Zmodels with flavored Higgs doublets, Phys. Rev. D 95 (2017) 115040 [arXiv:1702.08666] [INSPIRE].ADSGoogle Scholar
  35. [35]
    R. Alonso, P. Cox, C. Han and T.T. Yanagida, Anomaly-free local horizontal symmetry and anomaly-full rare B-decays, Phys. Rev. D 96 (2017) 071701 [arXiv:1704.08158] [INSPIRE].ADSGoogle Scholar
  36. [36]
    R. Alonso, P. Cox, C. Han and T.T. Yanagida, Flavoured B-L local symmetry and anomalous rare B decays, Phys. Lett. B 774 (2017) 643 [arXiv:1705.03858] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Y. Tang and Y.-L. Wu, Flavor non-universal gauge interactions and anomalies in B-meson decays, Chin. Phys. C 42 (2018) 033104 [arXiv:1705.05643] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C.-H. Chen and T. Nomura, Penguin bsℓ+ and B-meson anomalies in a gauged L μ -L τ, Phys. Lett. B 777 (2018) 420 [arXiv:1707.03249] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G. Faisel and J. Tandean, Connecting \( b\to s\ell \overline{\ell} \) anomalies to enhanced rare nonleptonic \( {\overline{B}}_s^0 \) decays in Z model, JHEP 02 (2018) 074 [arXiv:1710.11102] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K. Fuyuto, H.-L. Li and J.-H. Yu, Implications of hidden gauged U(1) model for B anomalies, Phys. Rev. D 97 (2018) 115003 [arXiv:1712.06736] [INSPIRE].ADSGoogle Scholar
  41. [41]
    L. Bian, H.M. Lee and C.B. Park, B-meson anomalies and Higgs physics in flavored U(1)′ model, Eur. Phys. J. C 78 (2018) 306 [arXiv:1711.08930] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Abdullah et al., Bottom-quark fusion processes at the LHC for probing Zmodels and B-meson decay anomalies, Phys. Rev. D 97 (2018) 075035 [arXiv:1707.07016] [INSPIRE].ADSGoogle Scholar
  43. [43]
    D. Bhatia, S. Chakraborty and A. Dighe, Neutrino mixing and R K anomaly in U(1)X models: a bottom-up approach, JHEP 03 (2017) 117 [arXiv:1701.05825] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B.C. Allanach, B. Gripaios and T. You, The case for future hadron colliders from BK (*) μ + μ decays, JHEP 03 (2018) 021 [arXiv:1710.06363] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    B.C. Allanach, T. Corbett, M.J. Dolan and T. You, Hadron collider sensitivity to fat flavourful Zs for \( {R}_{K^{\left(\ast \right)}} \), arXiv:1810.02166 [INSPIRE].
  46. [46]
    G.H. Duan, X. Fan, M. Frank, C. Han and J.M. Yang, A minimal U(1)′ extension of MSSM in light of the B decay anomaly, Phys. Lett. B 789 (2019) 54 [arXiv:1808.04116] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B. Allanach, J. Davighi and S. Melville, Anomaly-free, flavour-dependent U(1) charge assignments for Standard Model/Standard Model plus three right-handed neutrino fermionic content, (2018) [Zenodo].Google Scholar
  48. [48]
    C. Corianò, N. Irges and S. Morelli, Stückelberg axions and the effective action of anomalous Abelian models. 1. A unitarity analysis of the Higgs-axion mixing, JHEP 07 (2007) 008 [hep-ph/0701010] [INSPIRE].
  49. [49]
    N. Irges, C. Corianò and S. Morelli, Stückelberg axions and the effective action of anomalous Abelian models. 2. A SU(3)C × SU(2)W × U(1)Y × U(1)B model and its signature at the LHC, Nucl. Phys. B 789 (2008) 133 [hep-ph/0703127] [INSPIRE].
  50. [50]
    J. Preskill, Gauge anomalies in an effective field theory, Annals Phys. 210 (1991) 323 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].
  52. [52]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].
  54. [54]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, arXiv:1810.05338 [INSPIRE].
  56. [56]
    P. Woit, Quantum theory, groups and representations, Springer, Cham, Switzerland (2017).CrossRefzbMATHGoogle Scholar
  57. [57]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    P. Batra, B.A. Dobrescu and D. Spivak, Anomaly-free sets of fermions, J. Math. Phys. 47 (2006) 082301 [hep-ph/0510181] [INSPIRE].
  59. [59]
  60. [60]
    B.C. Allanach and J. Davighi, Third family hypercharge model for \( {R}_{K^{\left(\ast \right)}} \) and aspects of the fermion mass problem, arXiv:1809.01158 [INSPIRE].
  61. [61]
    C. Bonilla, T. Modak, R. Srivastava and J.W.F. Valle, \( \mathrm{U}{(1)}_{B_3-3{L}_{\mu }} \) gauge symmetry as a simple description of bs anomalies, Phys. Rev. D 98 (2018) 095002 [arXiv:1705.00915] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J. Ellis, M. Fairbairn and P. Tunney, Anomaly-free models for flavour anomalies, Eur. Phys. J. C 78 (2018) 238 [arXiv:1705.03447] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    H. Banerjee and S. Roy, Signatures of supersymmetry and L μ -L τ gauge bosons at Belle-II, arXiv:1811.00407 [INSPIRE].
  64. [64]
    G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{*}} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.DAMTPUniversity of CambridgeCambridgeU.K.
  2. 2.Emmanuel CollegeUniversity of CambridgeCambridgeU.K.

Personalised recommendations