Journal of High Energy Physics

, 2019:73 | Cite as

The large proper-time expansion of Yang-Mills plasma as a resurgent transseries

  • Inês Aniceto
  • Jakub Jankowski
  • Ben Meiring
  • Michał SpalińskiEmail author
Open Access
Regular Article - Theoretical Physics


We show that the late-time expansion of the energy density of \( \mathcal{N} \) = 4 supersymmetric Yang-Mills plasma at infinite coupling undergoing Bjorken flow takes the form of a multi-parameter transseries. Using the AdS/CFT correspondence we find a gravity solution which supplements the well known large proper-time expansion by exponentially-suppressed sectors corresponding to quasinormal modes of the AdS black-brane. The full solution also requires the presence of further sectors which have a natural interpretation as couplings between these modes. The exponentially-suppressed sectors represent nonhydrodynamic contributions to the energy density of the plasma. We use resurgence techniques on the resulting transseries to show that all the information encoded in the nonhydrodynamic sectors can be recovered from the original hydrodynamic gradient expansion.


AdS-CFT Correspondence Quark-Gluon Plasma Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material


  1. [1]
    W. Florkowski, M.P. Heller and M. Spaliński, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys. 81 (2018) 046001 [arXiv:1707.02282] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium — Ten Years of Progress in Theory and Numerical Simulations of Nuclear Collisions, arXiv:1712.05815 [INSPIRE].
  3. [3]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Jankowski, G. Plewa and M. Spaliński, Statistics of thermalization in Bjorken Flow, JHEP 12 (2014) 105 [arXiv:1411.1969] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Spaliński, Small systems and regulator dependence in relativistic hydrodynamics, Phys. Rev. D 94 (2016) 085002 [arXiv:1607.06381] [INSPIRE].ADSGoogle Scholar
  7. [7]
    P. Romatschke, Do nuclear collisions create a locally equilibrated quark-gluon plasma?, Eur. Phys. J. C 77 (2017) 21 [arXiv:1609.02820] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.P. Heller, R.A. Janik and P. Witaszczyk, Hydrodynamic Gradient Expansion in Gauge Theory Plasmas, Phys. Rev. Lett. 110 (2013) 211602 [arXiv:1302.0697] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.P. Heller and M. Spaliński, Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation, Phys. Rev. Lett. 115 (2015) 072501 [arXiv:1503.07514] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Romatschke, Relativistic Fluid Dynamics Far From Local Equilibrium, Phys. Rev. Lett. 120 (2018) 012301 [arXiv:1704.08699] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Spaliński, On the hydrodynamic attractor of Yang-Mills plasma, Phys. Lett. B 776 (2018) 468 [arXiv:1708.01921] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  14. [14]
    J.D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev. D 27 (1983) 140 [INSPIRE].ADSGoogle Scholar
  15. [15]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    J. Casalderrey-Solana, N.I. Gushterov and B. Meiring, Resurgence and Hydrodynamic Attractors in Gauss-Bonnet Holography, JHEP 04 (2018) 042 [arXiv:1712.02772] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M.P. Heller, R.A. Janik, M. Spaliński and P. Witaszczyk, Coupling hydrodynamics to nonequilibrium degrees of freedom in strongly interacting quark-gluon plasma, Phys. Rev. Lett. 113 (2014) 261601 [arXiv:1409.5087] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I. Aniceto and M. Spaliński, Resurgence in Extended Hydrodynamics, Phys. Rev. D 93 (2016) 085008 [arXiv:1511.06358] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    G.A. Edgar, Transseries for beginners, Real Anal. Exch. 35 (2010) 253 [arXiv:0801.4877].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    I. Aniceto, G. Basar and R. Schiappa, A Primer on Resurgent Transseries and Their Asymptotics, arXiv:1802.10441 [INSPIRE].
  22. [22]
    L. Motl and A. Neitzke, Asymptotic black hole quasinormal frequencies, Adv. Theor. Math. Phys. 7 (2003) 307 [hep-th/0301173] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    N. Andersson and C.J. Howls, The Asymptotic quasinormal mode spectrum of nonrotating black holes, Class. Quant. Grav. 21 (2004) 1623 [gr-qc/0307020] [INSPIRE].
  24. [24]
    J. Natario and R. Schiappa, On the classification of asymptotic quasinormal frequencies for d-dimensional black holes and quantum gravity, Adv. Theor. Math. Phys. 8 (2004) 1001 [hep-th/0411267] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J. Écalle, Les Fonctions Résurgentes, Prépub. Math. Université Paris-Sud 81-05 (1981), 81-06 (1981), 85-05 (1985).Google Scholar
  26. [26]
    S. Garoufalidis, A. Its, A. Kapaev and M. Mariño, Asymptotics of the instantons of Painlevé I, Int. Math. Res. Not. 2012 (2012) 561 [arXiv:1002.3634] [INSPIRE].CrossRefzbMATHGoogle Scholar
  27. [27]
    I. Aniceto, R. Schiappa and M. Vonk, The Resurgence of Instantons in String Theory, Commun. Num. Theor. Phys. 6 (2012) 339 [arXiv:1106.5922] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R. Schiappa and R. Vaz, The Resurgence of Instantons: Multi-Cut Stokes Phases and the Painlevé II Equation, Commun. Math. Phys. 330 (2014) 655 [arXiv:1302.5138] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    I. Aniceto, The Resurgence of the Cusp Anomalous Dimension, J. Phys. A 49 (2016) 065403 [arXiv:1506.03388] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    D. Dorigoni and Y. Hatsuda, Resurgence of the Cusp Anomalous Dimension, JHEP 09 (2015) 138 [arXiv:1506.03763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    G. Arutyunov, D. Dorigoni and S. Savin, Resurgence of the dressing phase for AdS 5 × S 5, JHEP 01 (2017) 055 [arXiv:1608.03797] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Couso-Santamaría, R. Schiappa and R. Vaz, On asymptotics and resurgent structures of enumerative Gromov-Witten invariants, Commun. Num. Theor. Phys. 11 (2017) 707 [arXiv:1605.07473] [INSPIRE].
  33. [33]
    C.M. Bender and T.T. Wu, Anharmonic oscillator. 2: A Study of perturbation theory in large order, Phys. Rev. D 7 (1973) 1620 [INSPIRE].
  34. [34]
    M. Mariño, R. Schiappa and M. Weiss, Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings, Commun. Num. Theor. Phys. 2 (2008) 349 [arXiv:0711.1954] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Başar, G.V. Dunne and M. Ünsal, Resurgence theory, ghost-instantons and analytic continuation of path integrals, JHEP 10 (2013) 041 [arXiv:1308.1108] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local ℂ2, Commun. Math. Phys. 338 (2015) 285 [arXiv:1407.4821] [INSPIRE].
  37. [37]
    G. Başar and G.V. Dunne, Hydrodynamics, resurgence and transasymptotics, Phys. Rev. D 92 (2015) 125011 [arXiv:1509.05046] [INSPIRE].ADSGoogle Scholar
  38. [38]
    I. Aniceto, Asymptotics, ambiguities and resurgence, in Resurgence, Physics and Numbers, F. Fauvet, D. Manchon, S. Marmi and D. Sauzin eds., Pisa, pp. 1, Scuola Normale Superiore (2017).Google Scholar
  39. [39]
    S. Codesido and M. Mariño, Holomorphic Anomaly and Quantum Mechanics, J. Phys. A 51 (2018) 055402 [arXiv:1612.07687] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    S. Demulder, D. Dorigoni and D.C. Thompson, Resurgence in η-deformed Principal Chiral Models, JHEP 07 (2016) 088 [arXiv:1604.07851] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 [INSPIRE].
  42. [42]
    D. Dorigoni and P. Glass, The grin of Cheshire cat resurgence from supersymmetric localization, SciPost Phys. 4 (2018) 012 [arXiv:1711.04802] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Codesido, M. Mariño and R. Schiappa, Non-Perturbative Quantum Mechanics from Non-Perturbative Strings, arXiv:1712.02603 [INSPIRE].
  44. [44]
    R. Balian, G. Parisi and A. Voros, Quartic oscillator, in Marseille Workshop on Feynman Path Integrals, (1978) [INSPIRE].
  45. [45]
    J. Zinn-Justin, Perturbation Series at Large Orders in Quantum Mechanics and Field Theories: Application to the Problem of Resummation, Phys. Rept. 70 (1981) 109 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M.P. Heller and R.A. Janik, Viscous hydrodynamics relaxation time from AdS/CFT, Phys. Rev. D 76 (2007) 025027 [hep-th/0703243] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    I. Booth, M.P. Heller and M. Spaliński, Black brane entropy and hydrodynamics: The Boost-invariant case, Phys. Rev. D 80 (2009) 126013 [arXiv:0910.0748] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M.P. Heller, P. Surowka, R. Loganayagam, M. Spaliński and S.E. Vazquez, Consistent Holographic Description of Boost-Invariant Plasma, Phys. Rev. Lett. 102 (2009) 041601 [arXiv:0805.3774] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Kinoshita, S. Mukohyama, S. Nakamura and K.-y. Oda, A Holographic Dual of Bjorken Flow, Prog. Theor. Phys. 121 (2009) 121 [arXiv:0807.3797] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R.A. Janik, G. Plewa, H. Soltanpanahi and M. Spaliński, Linearized nonequilibrium dynamics in nonconformal plasma, Phys. Rev. D 91 (2015) 126013 [arXiv:1503.07149] [INSPIRE].ADSGoogle Scholar
  54. [54]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].ADSGoogle Scholar
  55. [55]
    P. Grandclement and J. Novak, Spectral methods for numerical relativity, Living Rev. Rel. 12 (2009) 1 [arXiv:0706.2286] [INSPIRE].CrossRefzbMATHGoogle Scholar
  56. [56]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    D. Sauzin, Introduction to 1-Summability and Resurgence, in Divergent Series, Summability and Resurgence I, Lect. Notes Math. 2153 (2016) 121 [arXiv:1405.0356].
  58. [58]
    U.D. Jentschura and G. Soff, Improved conformal mapping of the Borel plane, J. Phys. A 34 (2001) 1451 [hep-ph/0006089] [INSPIRE].
  59. [59]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results II: Specific cases, higher-order effects and numerical calculations, Annals Phys. 313 (2004) 269 [quant-ph/0501137] [INSPIRE].
  60. [60]
    E. Caliceti, M. Meyer-Hermann, P. Ribeca, A. Surzhykov and U.D. Jentschura, From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions, Phys. Rept. 446 (2007) 1 [arXiv:0707.1596] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    O. Costin and G.V. Dunne, Convergence from Divergence, J. Phys. A 51 (2018) 04LT01 [arXiv:1705.09687] [INSPIRE].
  62. [62]
    O. Costin and G. Dunne, in preparation.Google Scholar
  63. [63]
    M. Spaliński, Universal behaviour, transients and attractors in supersymmetric Yang-Mills plasma, Phys. Lett. B 784 (2018) 21 [arXiv:1805.11689] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M.P. Heller and V. Svensson, How does relativistic kinetic theory remember about initial conditions?, Phys. Rev. D 98 (2018) 054016 [arXiv:1802.08225] [INSPIRE].ADSGoogle Scholar
  65. [65]
    A. Cherman, P. Koroteev and M. Ünsal, Resurgence and Holomorphy: From Weak to Strong Coupling, J. Math. Phys. 56 (2015) 053505 [arXiv:1410.0388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    A. Grassi, M. Mariño and S. Zakany, Resumming the string perturbation series, JHEP 05 (2015) 038 [arXiv:1405.4214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    R. Couso-Santamaría, R. Schiappa and R. Vaz, Finite N from Resurgent Large N, Annals Phys. 356 (2015) 1 [arXiv:1501.01007] [INSPIRE].
  68. [68]
    R. Couso-Santamaría, M. Mariño and R. Schiappa, Resurgence Matches Quantization, J. Phys. A 50 (2017) 145402 [arXiv:1610.06782] [INSPIRE].
  69. [69]
    O. Costin, Exponential Asymptotics, Transseries, and Generalized Borel Summation for Analytic Rank One Systems of ODE’s, Int. Math. Res. Not. 8 (1995) 377 [math/0608414].
  70. [70]
    O. Costin, On Borel Summation and Stokes Phenomena for Rank-1 Nonlinear Systems of Ordinary Differential Equations, Duke Math. J. 93 (1998) 289 [math/0608408].
  71. [71]
    I. Aniceto, R. Schiappa and M. Vonk, Painlevé resurgent transseries, to appear (2018) [].
  72. [72]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Inês Aniceto
    • 1
    • 2
  • Jakub Jankowski
    • 3
  • Ben Meiring
    • 4
  • Michał Spaliński
    • 5
    • 6
    Email author
  1. 1.Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Mathematical SciencesUniversity of SouthamptonSouthamptonU.K.
  3. 3.Faculty of PhysicsUniversity of WarsawWarsawPoland
  4. 4.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  5. 5.Physics DepartmentUniversity of BialystokBialystokPoland
  6. 6.National Center for Nuclear ResearchWarsawPoland

Personalised recommendations