Advertisement

Journal of High Energy Physics

, 2019:69 | Cite as

Binding complexity and multiparty entanglement

  • Vijay Balasubramanian
  • Matthew DeCross
  • Arjun KarEmail author
  • Onkar Parrikar
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce “binding complexity”, a new notion of circuit complexity which quantifies the difficulty of distributing entanglement among multiple parties, each consisting of many local degrees of freedom. We define binding complexity of a given state as the minimal number of quantum gates that must act between parties to prepare it. To illustrate the new notion we compute it in a toy model for a scalar field theory, using certain multiparty entangled states which are analogous to configurations that are known in AdS/CFT to correspond to multiboundary wormholes. Pursuing this analogy, we show that our states can be prepared by the Euclidean path integral in (0 + 1)-dimensional quantum mechanics on graphs with wormhole-like structure. We compute the binding complexity of our states by adapting the Euler-Arnold approach to Nielsen’s geometrization of gate counting, and find a scaling with entropy that resembles a result for the interior volume of holographic multiboundary wormholes. We also compute the binding complexity of general coherent states in perturbation theory, and show that for “double-trace deformations” of the Hamiltonian the effects resemble expansion of a wormhole interior in holographic theories.

Keywords

AdS-CFT Correspondence Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (1997) 1484 [quant-ph/9508027].
  2. [2]
    W. Dür, G. Vidal and J.I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62 (Nov, 2000) 062314 [quant-ph/0005115].
  3. [3]
    V. Coffman, J. Kundu and W.K. Wootters, Distributed entanglement, Phys. Rev. A 61 (2000) 052306 [quant-ph/9907047].
  4. [4]
    F. Diker, Deterministic construction of arbitrary w states with quadratically increasing number of two-qubit gates, arXiv:1606.09290.
  5. [5]
    R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M.A. Nielsen, A geometric approach to quantum circuit lower bounds, quant-ph/0502070.
  7. [7]
    K. Shizume, T. Nakajima, R. Nakayama and Y. Takahashi, Quantum computational Riemannian and sub-Riemannian geodesics, Prog. Theor. Phys. 127 (2012) 997 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    M.R. Dowling and M.A. Nielsen, The geometry of quantum computation, quant-ph/0701004.
  9. [9]
    R. Khan, C. Krishnan and S. Sharma, Circuit complexity in fermionic field theory, Phys. Rev. D 98 (2018) 126001 [arXiv:1801.07620] [INSPIRE].
  10. [10]
    L. Hackl and R.C. Myers, Circuit complexity for free fermions, JHEP 07 (2018) 139 [arXiv:1803.10638] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan, Circuit complexity for coherent states, JHEP 10 (2018) 011 [arXiv:1807.07677] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Bhattacharyya, A. Shekar and A. Sinha, Circuit complexity in interacting QFTs and RG flows, JHEP 10 (2018) 140 [arXiv:1808.03105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    H.A. Camargo et al., Complexity as a novel probe of quantum quenches: universal scalings and purifications, arXiv:1807.07075 [INSPIRE].
  14. [14]
    D.W.F. Alves and G. Camilo, Evolution of complexity following a quantum quench in free field theory, JHEP 06 (2018) 029 [arXiv:1804.00107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R.-Q. Yang and K.-Y. Kim, Complexity of operators generated by quantum mechanical Hamiltonians, arXiv:1810.09405 [INSPIRE].
  16. [16]
    R.-Q. Yang, Complexity for quantum field theory states and applications to thermofield double states, Phys. Rev. D 97 (2018) 066004 [arXiv:1709.00921] [INSPIRE].
  17. [17]
    R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP 02 (2018) 082 [arXiv:1710.00600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R.-Q. Yang et al., Principles and symmetries of complexity in quantum field theory, Eur. Phys. J. C 79 (2019) 109 [arXiv:1803.01797] [INSPIRE].
  19. [19]
    R.-Q. Yang et al., More on complexity of operators in quantum field theory, arXiv:1809.06678 [INSPIRE].
  20. [20]
    S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a definition of complexity for quantum field theory states, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    B. Czech, Einstein equations from varying complexity, Phys. Rev. Lett. 120 (2018) 031601 [arXiv:1706.00965] [INSPIRE].
  22. [22]
    P. Caputa et al., Anti-de Sitter space from optimization of path integrals in conformal field theories, Phys. Rev. Lett. 119 (2017) 071602 [arXiv:1703.00456] [INSPIRE].
  23. [23]
    P. Caputa et al., Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT, JHEP 11 (2017) 097 [arXiv:1706.07056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Bhattacharyya et al., Path-integral complexity for perturbed CFTs, JHEP 07 (2018) 086 [arXiv:1804.01999] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    T. Takayanagi, Holographic spacetimes as quantum circuits of path-integrations, JHEP 12 (2018) 048 [arXiv:1808.09072] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Molina-Vilaplana and A. Del Campo, Complexity functionals and complexity growth limits in continuous MERA circuits, JHEP 08 (2018) 012 [arXiv:1803.02356] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett. B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].
  28. [28]
    A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time story, arXiv:1811.03097 [INSPIRE].
  29. [29]
    J.M. Magán, Black holes, complexity and quantum chaos, JHEP 09 (2018) 043 [arXiv:1805.05839] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    P. Caputa and J.M. Magan, Quantum computation as gravity, arXiv:1807.04422 [INSPIRE].
  31. [31]
    T. Ali et al., Time evolution of complexity: a critique of three methods, arXiv:1810.02734 [INSPIRE].
  32. [32]
    V. Arnold, Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier 16 (1966) 319.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
  34. [34]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    V. Balasubramanian et al., Multiboundary wormholes and holographic entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
  37. [37]
    L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE].
  40. [40]
    A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].
  41. [41]
    D.R. Brill, Multi-black hole geometries in (2 + 1)-dimensional gravity, Phys. Rev. D 53 (1996) 4133 [gr-qc/9511022] [INSPIRE].
  42. [42]
    D. Brill, Black holes and wormholes in (2 + 1)-dimensions, gr-qc/9904083 [INSPIRE].
  43. [43]
    S. Aminneborg et al., Black holes and wormholes in (2 + 1)-dimensions, Class. Quant. Grav. 15 (1998) 627 [gr-qc/9707036] [INSPIRE].
  44. [44]
    K. Skenderis and B.C. van Rees, Holography and wormholes in 2 + 1 dimensions, Commun. Math. Phys. 301 (2011) 583 [arXiv:0912.2090] [INSPIRE].
  45. [45]
    K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929 [hep-th/0005106] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    K. Krasnov, Black hole thermodynamics and Riemann surfaces, Class. Quant. Grav. 20 (2003) 2235 [gr-qc/0302073] [INSPIRE].
  47. [47]
    D. Marolf, H. Maxfield, A. Peach and S.F. Ross, Hot multiboundary wormholes from bipartite entanglement, Class. Quant. Grav. 32 (2015) 215006 [arXiv:1506.04128] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    Z. Fu et al., Holographic complexity is nonlocal, JHEP 02 (2018) 072 [arXiv:1801.01137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    A. Peach and S.F. Ross, Tensor network models of multiboundary wormholes, Class. Quant. Grav. 34 (2017) 105011 [arXiv:1702.05984] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    M.A. Nielsen et al., Quantum dynamics as a physical resource, Phys. Rev. A 67 (2003) 052301 [quant-ph/0208077].
  52. [52]
    A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996) 1413 [quant-ph/9604005].
  53. [53]
    M. Horodecki, P. Horodecki and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 223 (1996) 1 [quant-ph/9605038].
  54. [54]
    G. Vidal and R.F. Werner, Computable measure of entanglement, Phys. Rev. A 65 (2002) 032314 [quant-ph/0102117].
  55. [55]
    S. Rana, Negative eigenvalues of partial transposition of arbitrary bipartite states, Phys. Rev. A 87 (2013) 054301 [arXiv:1304.6775].
  56. [56]
    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    R. Simon, Peres-horodecki separability criterion for continuous variable systems, Phys. Rev. Lett. 84 (2000) 2726 [quant-ph/9909044].
  58. [58]
    R.F. Werner and M.M. Wolf, Bound entangled gaussian states, Phys. Rev. Lett. 86 (2001) 3658 [quant-ph/0009118].
  59. [59]
    E. Shchukin and W. Vogel, Inseparability criteria for continuous bipartite quantum states, Phys. Rev. Lett. 95 (2005) 230502 [quant-ph/0508132].
  60. [60]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    A.R. Brown et al., Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
  62. [62]
    P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].
  64. [64]
    M. Freedman and M. Headrick, Bit threads and holographic entanglement, Commun. Math. Phys. 352 (2017) 407 [arXiv:1604.00354] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    M. Headrick and V.E. Hubeny, Riemannian and Lorentzian flow-cut theorems, Class. Quant. Grav. 35 (2018) 10 [arXiv:1710.09516] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
  67. [67]
    V.E. Hubeny, Bulk locality and cooperative flows, JHEP 12 (2018) 068 [arXiv:1808.05313] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.David Rittenhouse LaboratoryUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay InstitutesBrusselsBelgium

Personalised recommendations