Advertisement

Journal of High Energy Physics

, 2019:68 | Cite as

Fermion masses, mass-mixing and the almost commutative geometry of the Standard Model

  • Ludwik Dąbrowski
  • Andrzej SitarzEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate whether the Standard Model, within the accuracy of current experimental measurements, satisfies the regularity in the form of Hodge duality condition introduced and studied in [9]. We show that the neutrino and quark mass-mixing and the difference of fermion masses are necessary for this property. We demonstrate that the current data supports this new geometric feature of the Standard Model, Hodge duality, provided that all neutrinos are massive.

Keywords

Non-Commutative Geometry Quark Masses and SM Parameters 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Connes, Noncommutative geometry and reality, J. Math. Phys. 36 (1995) 6194 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Connes, Gravity coupled with matter and foundation of noncommutative geometry, Commun. Math. Phys. 182 (1996) 155 [hep-th/9603053] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Connes and M. Marcolli, Colloquium Publications. Vol. 55: Noncommutative geometry, quantum fields and motives, AMS Press, New York U.S.A. (2007).Google Scholar
  4. [4]
    A.H. Chamseddine and A. Connes, Resilience of the Spectral Standard Model, JHEP 09 (2012) 104 [arXiv:1208.1030] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Devastato, F. Lizzi and P. Martinetti, Higgs mass in Noncommutative Geometry, Fortsch. Phys. 62 (2014) 863 [arXiv:1403.7567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    F. D’Andrea, M.A. Kurkov and F. Lizzi, Wick Rotation and Fermion Doubling in Noncommutative Geometry, Phys. Rev. D 94 (2016) 025030 [arXiv:1605.03231] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    A. Bochniak and A. Sitarz, Finite pseudo-Riemannian spectral triples and the standard model, Phys. Rev. D 97 (2018) 115029 [arXiv:1804.09482] [INSPIRE].ADSGoogle Scholar
  8. [8]
    F. D’Andrea and L. Dabrowski, The Standard Model in Noncommutative Geometry and Morita equivalence, arXiv:1501.00156 [INSPIRE].
  9. [9]
    L. Dąbrowski, F. D’Andrea and A. Sitarz, The Standard Model in noncommutative geometry: fundamental fermions as internal forms, Lett. Math. Phys. 108 (2018) 1323 [arXiv:1703.05279] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Connes, On the spectral characterization of manifolds, J. Noncommut. Geom. 7 (2013) 1 [arXiv:0810.2088] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Lord, A. Rennie and J.C. Várilly, Riemannian manifolds in noncommutative geometry, J. Geom. Phys. 62 (2012) 1611 [arXiv:1109.2196] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R.J. Plymen, Strong Morita equivalence, spinors and symplectic spinors, J. Operat. Theor. 16 (1986) 305.MathSciNetzbMATHGoogle Scholar
  13. [13]
    M. Paschke and A. Sitarz, Discrete sprectral triples and their symmetries, J. Math. Phys. 39 (1998) 6191 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    W.D. van Suijlekom, Noncommutative Geometry and Particle Physics, Springer, Heidelberg Germany (2015).CrossRefzbMATHGoogle Scholar
  15. [15]
    L. Boyle and S. Farnsworth, Non-Commutative Geometry, Non-Associative Geometry and the Standard Model of Particle Physics, New J. Phys. 16 (2014) 123027 [arXiv:1401.5083] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Paschke, F. Scheck and A. Sitarz, Can (noncommutative) geometry accommodate leptoquarks?, Phys. Rev. D 59 (1999) 035003 [hep-th/9709009] [INSPIRE].ADSGoogle Scholar
  17. [17]
    W. Burnside, On the condition of reducibility of any group of linear substitutions, Proc. London Math. Soc. 3 (1905) 430.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F. Capozzi, E. Lisi, A. Marrone and A. Palazzo, Current unknowns in the three neutrino framework, Prog. Part. Nucl. Phys. 102 (2018) 48 [arXiv:1804.09678] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Particle Data Group, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001.Google Scholar
  20. [20]
    T. Ohlsson and S. Zhou, Renormalization group running of neutrino parameters, Nature Commun. 5 (2014) 5153 [arXiv:1311.3846] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Denner and T. Sack, Renormalization of the Quark Mixing Matrix, Nucl. Phys. B 347 (1990) 203 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Scuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
  2. 2.Instytut Fizyki Uniwersytetu JagiellońskiegoKrakówPoland
  3. 3.Institute of Mathematics of the Polish Academy of SciencesWarszawaPoland

Personalised recommendations