Advertisement

Journal of High Energy Physics

, 2019:66 | Cite as

Updating bounds on R-parity violating supersymmetry from meson oscillation data

  • Florian Domingo
  • Herbert K. Dreiner
  • Jong Soo Kim
  • Manuel E. Krauss
  • Víctor Martín Lozano
  • Zeren Simon WangEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We update the bounds on R-parity violating supersymmetry originating from meson oscillations in the B d/ s 0 and K0 systems. To this end, we explicitly calculate all corresponding contributions from R-parity violating operators at the one-loop level, thereby completing and correcting existing calculations. We apply our results to the derivation of bounds on R-parity violating couplings, based on up-to-date experimental measurements. In addition, we consider the possibility of cancellations among flavor-changing contributions of various origins, e.g. from multiple R-parity violating couplings or R-parity conserving soft terms. Destructive interferences among new-physics contributions could then open phenomenologically allowed regions, for values of the parameters that are naively excluded when the parameters are varied individually.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
  2. [2]
  3. [3]
  4. [4]
  5. [5]
  6. [6]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 995 [arXiv:1803.02762] [INSPIRE].
  7. [7]
    P. Bechtle et al., Killing the CMSSM softly, Eur. Phys. J. C 76 (2016) 96 [arXiv:1508.05951] [INSPIRE].
  8. [8]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].
  11. [11]
    G.R. Farrar and P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575.Google Scholar
  12. [12]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  13. [13]
    H.K. Dreiner, An Introduction to explicit R-parity violation, hep-ph/9707435 [INSPIRE].
  14. [14]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].
  15. [15]
    A.H. Chamseddine and H.K. Dreiner, Anomaly free gauged R symmetry in local supersymmetry, Nucl. Phys. B 458 (1996) 65 [hep-ph/9504337] [INSPIRE].
  16. [16]
    H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].
  17. [17]
    H.K. Dreiner, C. Luhn, H. Murayama and M. Thormeier, Proton hexality from an anomalous flavor U(1) and neutrino masses: linking to the string scale, Nucl. Phys. B 795 (2008) 172 [arXiv:0708.0989] [INSPIRE].
  18. [18]
    H.K. Dreiner, T. Opferkuch and C. Luhn, Froggatt-Nielsen models with a residual ℤ 4R symmetry, Phys. Rev. D 88 (2013) 115005 [arXiv:1308.0332] [INSPIRE].
  19. [19]
    M. Hanussek and J.S. Kim, Testing neutrino masses in the R-parity violating minimal supersymmetric standard model with LHC results, Phys. Rev. D 85 (2012) 115021 [arXiv:1205.0019] [INSPIRE].
  20. [20]
    D. Dercks et al., R-parity violation at the LHC, Eur. Phys. J. C 77 (2017) 856 [arXiv:1706.09418] [INSPIRE].
  21. [21]
    S. Weinberg, Supersymmetry at ordinary energies. 1. Masses and conservation laws, Phys. Rev. D 26 (1982) 287 [INSPIRE].
  22. [22]
    J.-H. Jang, J.K. Kim and J.S. Lee, Constraints on the R-parity and lepton flavor violating couplings from B0 decays to two charged leptons, Phys. Rev. D 55 (1997) 7296 [hep-ph/9701283] [INSPIRE].
  23. [23]
    K.-m. Cheung and O.C.W. Kong, μeγ from supersymmetry without R-parity, Phys. Rev. D 64 (2001) 095007 [hep-ph/0101347] [INSPIRE].
  24. [24]
    A. Vicente, Charged lepton flavor violation beyond minimal supersymmetry, Nucl. Phys. Proc. Suppl. 248-250 (2014) 20 [arXiv:1310.8162] [INSPIRE].
  25. [25]
    D.F. Carvalho, M.E. Gomez and J.C. Romao, Charged lepton flavor violation in supersymmetry with bilinear R-parity violation, Phys. Rev. D 65 (2002) 093013 [hep-ph/0202054] [INSPIRE].
  26. [26]
    M. Endo, K. Hamaguchi and S. Iwamoto, Lepton flavor violation and cosmological constraints on R-parity violation, JCAP 02 (2010) 032 [arXiv:0912.0585] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K. Choi, E.J. Chun and K. Hwang, Lepton flavor violation and bilinear R-parity violation, Phys. Lett. B 488 (2000) 145 [hep-ph/0005262] [INSPIRE].
  28. [28]
    A. de Gouvêa, S. Lola and K. Tobe, Lepton flavor violation in supersymmetric models with trilinear R-parity violation, Phys. Rev. D 63 (2001) 035004 [hep-ph/0008085] [INSPIRE].
  29. [29]
    A. Vicente, Lepton flavor violation beyond the MSSM, Adv. High Energy Phys. 2015 (2015) 686572 [arXiv:1503.08622] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Gemintern, S. Bar-Shalom, G. Eilam and F. Krauss, Lepton flavor violating decays Llγγ as a new probe of supersymmetry with broken R parity, Phys. Rev. D 67 (2003) 115012 [hep-ph/0302186] [INSPIRE].
  31. [31]
    C.-Y. Chen and O.C.W. Kong, Leptonic radiative decay in supersymmetry without R parity, Phys. Rev. D 79 (2009) 115013 [arXiv:0901.3371] [INSPIRE].
  32. [32]
    Y. Cheng and O.C.W. Kong, Leptonic flavor violating Higgs to μ + τ decay in supersymmetry without R parity, in the proceedings of the 20th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2012), August 13-17, Beijing, China (2012), arXiv:1211.0365 [INSPIRE].
  33. [33]
    A. Arhrib, Y. Cheng and O.C.W. Kong, Comprehensive analysis on lepton flavor violating Higgs boson to μ τ ± decay in supersymmetry without R parity, Phys. Rev. D 87 (2013) 015025 [arXiv:1210.8241] [INSPIRE].
  34. [34]
    A. Arhrib, Y. Cheng and O.C.W. Kong, Higgs to μ + τ decay in supersymmetry without R-parity, EPL 101 (2013) 31003 [arXiv:1208.4669] [INSPIRE].
  35. [35]
    J. Cao, L. Wu and J.M. Yang, Lepton flavor-changing processes in R-parity violating MSSM: \( Z\to {l}_i{\overline{l}}_j \) and \( \gamma \gamma \to {l}_i{\overline{l}}_j \) under new bounds from l il j γ, Nucl. Phys. B 829 (2010) 370 [arXiv:0908.4556] [INSPIRE].
  36. [36]
    M. Gomez and D.F. Carvalho, Lepton flavor violation in SUSY with and without R parity, in the proceedings of the Corfu Summer Institute on Elementary Particle Physics (Corfu 2001), August 31-September 20, Corfu, Greece (2001), hep-ph/0204133 [INSPIRE].
  37. [37]
    H.K. Dreiner, M. Krämer and B. O’Leary, Bounds on R-parity violating supersymmetric couplings from leptonic and semi-leptonic meson decays, Phys. Rev. D 75 (2007) 114016 [hep-ph/0612278] [INSPIRE].
  38. [38]
    H.K. Dreiner, K. Nickel, F. Staub and A. Vicente, New bounds on trilinear R-parity violation from lepton flavor violating observables, Phys. Rev. D 86 (2012) 015003 [arXiv:1204.5925] [INSPIRE].
  39. [39]
    W.-j. Li, Y.-d. Yang and X.-d. Zhang, τ μ π 0(η, η ) decays in new physics scenarios beyond the standard model, Phys. Rev. D 73 (2006) 073005 [hep-ph/0511273] [INSPIRE].
  40. [40]
    W. Li, X.-Q. Nie, Y.-Y. Fan, M.-Q. Lu and Y.-w. Guo, RPV SUSY effects in \( {\tau}^{-}\to {e}^{-}\left({\mu}^{-}\right)K\overline{K} \) Decays, Int. J. Mod. Phys. A 29 (2014) 1450063 [arXiv:1312.2231] [INSPIRE].
  41. [41]
    G.-C. Cho and H. Matsuo, Constraints on R-parity violating interactions in supersymmetric standard model from leptonic decays of D s and B + mesons, Phys. Lett. B 703 (2011) 318 [arXiv:1107.3004] [INSPIRE].
  42. [42]
    R. Bose, Rare τ decays in R-parity violating supersymmetry, J. Phys. G 38 (2011) 065003 [arXiv:1012.1736] [INSPIRE].
  43. [43]
    Y. Grossman and H.E. Haber, (S)neutrino properties in R-parity violating supersymmetry. 1. CP conserving phenomena, Phys. Rev. D 59 (1999) 093008 [hep-ph/9810536] [INSPIRE].
  44. [44]
    H.K. Dreiner, M. Hanussek, J.-S. Kim and C.H. Kom, Neutrino masses and mixings in the baryon triality constrained minimal supersymmetric standard model, Phys. Rev. D 84 (2011) 113005 [arXiv:1106.4338] [INSPIRE].
  45. [45]
    H.K. Dreiner, J. Soo Kim and M. Thormeier, A simple baryon triality model for neutrino masses, arXiv:0711.4315 [INSPIRE].
  46. [46]
    M. Hirsch, M.A. Diaz, W. Porod, J.C. Romao and J.W.F. Valle, Neutrino masses and mixings from supersymmetry with bilinear R parity violation: a theory for solar and atmospheric neutrino oscillations, Phys. Rev. D 62 (2000) 113008 [Erratum ibid. D 65 (2002) 119901] [hep-ph/0004115] [INSPIRE].
  47. [47]
    B. de Carlos and P.L. White, R-parity violation and quark flavor violation, Phys. Rev. D 55 (1997) 4222 [hep-ph/9609443] [INSPIRE].
  48. [48]
    H.K. Dreiner, G. Polesello and M. Thormeier, Bounds on broken R parity from leptonic meson decays, Phys. Rev. D 65 (2002) 115006 [hep-ph/0112228] [INSPIRE].
  49. [49]
    H.K. Dreiner, K. Nickel and F. Staub, \( {B}_{s,d}^0\to \mu \overline{\mu} \) and BX s γ in the R-parity violating MSSM, Phys. Rev. D 88 (2013) 115001 [arXiv:1309.1735] [INSPIRE].
  50. [50]
    W. Altmannshofer, A.J. Buras and D. Guadagnoli, The MFV limit of the MSSM for low tan β: meson mixings revisited, JHEP 11 (2007) 065 [hep-ph/0703200] [INSPIRE].
  51. [51]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].
  52. [52]
    K. Agashe and M. Graesser, R-parity violation in flavor changing neutral current processes and top quark decays, Phys. Rev. D 54 (1996) 4445 [hep-ph/9510439] [INSPIRE].
  53. [53]
    D. Choudhury and P. Roy, New constraints on lepton nonconserving R-parity violating couplings, Phys. Lett. B 378 (1996) 153 [hep-ph/9603363] [INSPIRE].
  54. [54]
    G. Bhattacharyya and A. Raychaudhuri, New constraints on R-parity violation from K and B systems, Phys. Rev. D 57 (1998) 3837 [hep-ph/9712245] [INSPIRE].
  55. [55]
    J.P. Saha and A. Kundu, Reevaluating bounds on flavor changing neutral current parameters in R parity conserving and R parity violating supersymmetry from \( {B}^0-{\overline{B}}^0 \) mixing, Phys. Rev. D 69 (2004) 016004 [hep-ph/0307259] [INSPIRE].
  56. [56]
    A. Kundu and J.P. Saha, Constraints on R-parity violating supersymmetry from neutral meson mixing, Phys. Rev. D 70 (2004) 096002 [hep-ph/0403154] [INSPIRE].
  57. [57]
    S. Nandi and J.P. Saha, \( {B}_s-{\overline{B}}_s \) mixing, B decays and R-parity violating supersymmetry, Phys. Rev. D 74 (2006) 095007 [hep-ph/0608341] [INSPIRE].
  58. [58]
    R.-M. Wang, G.R. Lu, E.-K. Wang and Y.-D. Yang, Probe the R-parity violating supersymmetry effects in the \( {B}_s^0-{\overline{B}}_s^0 \) mixing, HEPNP 31 (2007) 332 [hep-ph/0609276] [INSPIRE].
  59. [59]
    R.-M. Wang, Y.-G. Xu, M.-L. Liu and B.-Z. Li, Reevaluating R-parity violating supersymmetry effects in \( {B}_s^0-{\overline{B}}_s^0 \) mixing, JHEP 12 (2010) 034 [arXiv:1007.2944] [INSPIRE].
  60. [60]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  61. [61]
    A. Lenz et al., Anatomy of New Physics in \( B-\overline{B} \) mixing, Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593] [INSPIRE].
  62. [62]
    A. Lenz and U. Nierste, Numerical updates of lifetimes and mixing parameters of B mesons, in the proceedings ofCKM unitarity triangle. 6th International Workshop (CKM 2010), Spetember 6-10, Warwick, U.K. (2011), arXiv:1102.4274 [INSPIRE].
  63. [63]
    M. Artuso, G. Borissov and A. Lenz, CP violation in the B s0 system, Rev. Mod. Phys. 88 (2016) 045002 [arXiv:1511.09466] [INSPIRE].
  64. [64]
    L. Di Luzio, M. Kirk and A. Lenz, Updated B s -mixing constraints on new physics models for bsℓ + anomalies, Phys. Rev. D 97 (2018) 095035 [arXiv:1712.06572] [INSPIRE].
  65. [65]
    Fermilab Lattice, MILC collaboration, B ( s)0 -mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D 93 (2016) 113016 [arXiv:1602.03560] [INSPIRE].
  66. [66]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001.Google Scholar
  67. [67]
    J. Bijnens, J.M. Gerard and G. Klein, The K L -K S mass difference, Phys. Lett. B 257 (1991) 191 [INSPIRE].
  68. [68]
    Z. Bai et al., K L -K S mass difference from lattice QCD, Phys. Rev. Lett. 113 (2014) 112003 [arXiv:1406.0916] [INSPIRE].
  69. [69]
    A.J. Buras and J. Girrbach, Stringent tests of constrained Minimal Flavor Violation through ΔF = 2 transitions, Eur. Phys. J. C 73 (2013) 2560 [arXiv:1304.6835] [INSPIRE].
  70. [70]
    J. Brod and M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP-violation parameter ϵ K and ΔM K , Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].
  71. [71]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
  72. [72]
    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].
  73. [73]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  74. [74]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  75. [75]
    F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].
  76. [76]
    F. Staub, From Superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  78. [78]
    F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
  79. [79]
    F. Staub, SARAH 4 : A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
  80. [80]
    F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780 [arXiv:1503.04200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  81. [81]
    W. Porod, F. Staub and A. Vicente, A flavor kit for BSM models, Eur. Phys. J. C 74 (2014) 2992 [arXiv:1405.1434] [INSPIRE].
  82. [82]
    D. Straub et al., flav-io/flavio v0.23, (2017).Google Scholar
  83. [83]
    K. Fujikawa, B.W. Lee and A.I. Sanda, Generalized renormalizable gauge formulation of spontaneously broken gauge theories, Phys. Rev. D 6 (1972) 2923 [INSPIRE].
  84. [84]
    W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B 84 (1979) 193.Google Scholar
  85. [85]
    D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Regularization by dimensional reduction of supersymmetric and nonsupersymmetric gauge theories, Nucl. Phys. B 167 (1980) 479 [INSPIRE].
  86. [86]
    H.K. Dreiner and M. Thormeier, Supersymmetric Froggatt-Nielsen models with baryon and lepton number violation, Phys. Rev. D 69 (2004) 053002 [hep-ph/0305270] [INSPIRE].
  87. [87]
    B.C. Allanach, A. Dedes and H.K. Dreiner, R parity violating minimal supergravity model, Phys. Rev. D 69 (2004) 115002 [Erratum ibid. D 72 (2005) 079902] [hep-ph/0309196] [INSPIRE].
  88. [88]
    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    S.P. Martin, Two loop scalar self energies in a general renormalizable theory at leading order in gauge couplings, Phys. Rev. D 70 (2004) 016005 [hep-ph/0312092] [INSPIRE].
  90. [90]
    F. Staub and W. Porod, Improved predictions for intermediate and heavy Supersymmetry in the MSSM and beyond, Eur. Phys. J. C 77 (2017) 338 [arXiv:1703.03267] [INSPIRE].
  91. [91]
    M. Goodsell, K. Nickel and F. Staub, Generic two-loop Higgs mass calculation from a diagrammatic approach, Eur. Phys. J. C 75 (2015) 290 [arXiv:1503.03098] [INSPIRE].
  92. [92]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  93. [93]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  94. [94]
    B. Chokoufe Nejad, T. Hahn, J.N. Lang and E. Mirabella, FormCalc 8: better algebra and vectorization, J. Phys. Conf. Ser. 523 (2014) 012050 [arXiv:1310.0274] [INSPIRE].
  95. [95]
    F. Mahmoudi et al., Flavour Les Houches accord: interfacing flavour related codes, Comput. Phys. Commun. 183 (2012) 285 [arXiv:1008.0762] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    J. Brod and M. Gorbahn, ε K at next-to-next-to-leading order: the charm-top-quark contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].
  97. [97]
    ETM collaboration, ΔS = 2 and ΔC = 2 bag parameters in the standard model and beyond from N f = 2 + 1 + 1 twisted-mass lattice QCD, Phys. Rev. D 92 (2015) 034516 [arXiv:1505.06639] [INSPIRE].
  98. [98]
    HPQCD collaboration, B-Meson decay constants from improved lattice nonrelativistic QCD with physical u, d, s and c quarks, Phys. Rev. Lett. 110 (2013) 222003 [arXiv:1302.2644] [INSPIRE].
  99. [99]
    A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ϵ parameter and \( {B}^0-{\overline{B}}^0 \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].
  100. [100]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  101. [101]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].
  102. [102]
    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    B.C. Allanach, A. Dedes and H.K. Dreiner, Bounds on R-parity violating couplings at the weak scale and at the GUT scale, Phys. Rev. D 60 (1999) 075014 [hep-ph/9906209] [INSPIRE].
  104. [104]
    B.C. Allanach, A. Dedes and H.K. Dreiner, Two loop supersymmetric renormalization group equations including R-parity violation and aspects of unification, Phys. Rev. D 60 (1999) 056002 [Erratum ibid. D 86 (2012) 039906] [hep-ph/9902251] [INSPIRE].
  105. [105]
    A. Abada et al., Lepton flavor violation in low-scale seesaw models: SUSY and non-SUSY contributions, JHEP 11 (2014) 048 [arXiv:1408.0138] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Bethe Center for Theoretical Physics & Physikalisches Institut der Universität BonnBonnGermany
  2. 2.Instituto de Física Teórica (UAM/CSIC)Universidad Autónoma de MadridMadridSpain
  3. 3.Instituto de Física de Cantabria (CSIC-UC)SantanderSpain
  4. 4.National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations