Advertisement

Journal of High Energy Physics

, 2019:65 | Cite as

Neutrino predictions from a left-right symmetric flavored extension of the standard model

  • A. E. Cárcamo HernándezEmail author
  • Sergey Kovalenko
  • José W. F. Valle
  • C. A. Vaquera-Araujo
Open Access
Regular Article - Theoretical Physics

Abstract

We propose a left-right symmetric electroweak extension of the Standard Model based on the Δ (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μτ symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.

Keywords

Beyond Standard Model Discrete Symmetries Neutrino Physics Quark Masses and SM Parameters 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].
  2. [2]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  3. [3]
    R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].
  4. [4]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Morisi and J.W.F. Valle, Neutrino masses and mixing: a flavour symmetry roadmap, Fortsch. Phys. 61 (2013) 466 [arXiv:1206.6678] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].
  7. [7]
    A.E. Cárcamo Hernández, S. Kovalenko, J.W.F. Valle and C.A. Vaquera-Araujo, Predictive Pati-Salam theory of fermion masses and mixing, JHEP 07 (2017) 118 [arXiv:1705.06320] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
  9. [9]
    M.C. Gonzalez-Garcia and J.W.F. Valle, Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models, Phys. Lett. B 216 (1989) 360 [INSPIRE].
  10. [10]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].
  11. [11]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].
  12. [12]
    M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].
  13. [13]
    F. Bazzocchi, D.G. Cerdeno, C. Muñoz and J.W.F. Valle, Calculable inverse-seesaw neutrino masses in supersymmetry, Phys. Rev. D 81 (2010) 051701 [arXiv:0907.1262] [INSPIRE].
  14. [14]
    A.E. Cárcamo Hernández and H.N. Long, A highly predictive A 4 flavour 3-3-1 model with radiative inverse seesaw mechanism, J. Phys. G 45 (2018) 045001 [arXiv:1705.05246] [INSPIRE].
  15. [15]
    A. Davidson and K.C. Wali, Universal Seesaw Mechanism?, Phys. Rev. Lett. 59 (1987) 393 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Z.G. Berezhiani and R. Rattazzi, Universal seesaw and radiative quark mass hierarchy, Phys. Lett. B 279 (1992) 124 [INSPIRE].
  17. [17]
    I.S. Sogami and T. Shinohara, Universal seesaw mechanism for quarks and leptons, Prog. Theor. Phys. 86 (1991) 1031 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P.-H. Gu and M. Lindner, Universal Seesaw from Left-Right and Peccei-Quinn Symmetry Breaking, Phys. Lett. B 698 (2011) 40 [arXiv:1010.4635] [INSPIRE].
  19. [19]
    C. Alvarado, R. Martinez and F. Ochoa, Quark mass hierarchy in 3-3-1 models, Phys. Rev. D 86 (2012) 025027 [arXiv:1207.0014] [INSPIRE].
  20. [20]
    A.E. Cárcamo Hernández, R. Martinez and F. Ochoa, Radiative seesaw-type mechanism of quark masses in SU(3)C ⊗ SU(3)L ⊗ U(1)X , Phys. Rev. D 87 (2013) 075009 [arXiv:1302.1757] [INSPIRE].
  21. [21]
    R. Kawasaki, T. Morozumi and H. Umeeda, Quark sector CP-violation of the universal seesaw model, Phys. Rev. D 88 (2013) 033019 [arXiv:1306.5080] [INSPIRE].
  22. [22]
    R.N. Mohapatra and Y. Zhang, TeV Scale Universal Seesaw, Vacuum Stability and Heavy Higgs, JHEP 06 (2014) 072 [arXiv:1401.6701] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Quark Seesaw, Vectorlike Fermions and Diphoton Excess, JHEP 02 (2016) 186 [arXiv:1512.08507] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Borah and S. Patra, Universal seesaw and 0νββ in new 3331 left-right symmetric model, Phys. Lett. B 771 (2017) 318 [arXiv:1701.08675] [INSPIRE].
  25. [25]
    A. Patra and S.K. Rai, Lepton-specific universal seesaw model with left-right symmetry, Phys. Rev. D 98 (2018) 015033 [arXiv:1711.00627] [INSPIRE].
  26. [26]
    S.F. King, \( {R}_{K^{\left(\ast \right)}} \) and the origin of Yukawa couplings, JHEP 09 (2018) 069 [arXiv:1806.06780] [INSPIRE].
  27. [27]
    K.S. Babu, R.N. Mohapatra and B. Dutta, A Theory of R(D , D) Anomaly with Right-Handed Currents, arXiv:1811.04496 [INSPIRE].
  28. [28]
    G.C. Branco, J.M. Gerard and W. Grimus, Geometrical t-violation, Phys. Lett. B 136 (1984) 383 [INSPIRE].
  29. [29]
    N. Bernal, A.E. Cárcamo Hernández, I. de Medeiros Varzielas and S. Kovalenko, Fermion masses and mixings and dark matter constraints in a model with radiative seesaw mechanism, JHEP 05 (2018) 053 [arXiv:1712.02792] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Bhattacharyya, I. de Medeiros Varzielas and P. Leser, A common origin of fermion mixing and geometrical CP-violation and its test through Higgs physics at the LHC, Phys. Rev. Lett. 109 (2012) 241603 [arXiv:1210.0545] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Aranda, C. Bonilla, S. Morisi, E. Peinado and J.W.F. Valle, Dirac neutrinos from flavor symmetry, Phys. Rev. D 89 (2014) 033001 [arXiv:1307.3553] [INSPIRE].
  32. [32]
    A.E. Cárcamo Hernández, J.C. Gómez-Izquierdo, S. Kovalenko and M. Mondragón, Δ (27) flavor singlet-triplet Higgs model for fermion masses and mixings, arXiv:1810.01764 [INSPIRE].
  33. [33]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].
  34. [34]
    I. de Medeiros Varzielas, G.G. Ross and J. Talbert, A Unified Model of Quarks and Leptons with a Universal Texture Zero, JHEP 03 (2018) 007 [arXiv:1710.01741] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    I. De Medeiros Varzielas, M.L. López-Ibáñez, A. Melis and O. Vives, Controlled flavor violation in the MSSM from a unified Δ(27) flavor symmetry, JHEP 09 (2018) 047 [arXiv:1807.00860] [INSPIRE].
  36. [36]
    P. Chen, G.-J. Ding, A.D. Rojas, C.A. Vaquera-Araujo and J.W.F. Valle, Warped flavor symmetry predictions for neutrino physics, JHEP 01 (2016) 007 [arXiv:1509.06683] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    V.V. Vien, A.E. Cárcamo Hernández and H.N. Long, The Δ(27) flavor 3-3-1 model with neutral leptons, Nucl. Phys. B 913 (2016) 792 [arXiv:1601.03300] [INSPIRE].
  38. [38]
    A.E. Cárcamo Hernández, H.N. Long and V.V. Vien, A 3-3-1 model with right-handed neutrinos based on the Δ (27) family symmetry, Eur. Phys. J. C 76 (2016) 242 [arXiv:1601.05062] [INSPIRE].
  39. [39]
    A.E. Cárcamo Hernández, H.N. Long and V.V. Vien, The first Δ(27) flavor 3-3-1 model with low scale seesaw mechanism, Eur. Phys. J. C 78 (2018) 804 [arXiv:1803.01636] [INSPIRE].
  40. [40]
    D. Emmanuel-Costa, C. Simoes and M. Tortola, The minimal adjoint-SU(5) × Z 4 GUT model, JHEP 10 (2013) 054 [arXiv:1303.5699] [INSPIRE].
  41. [41]
    C. Arbeláez, A.E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Adjoint SU(5) GUT model with T 7 flavor symmetry, Phys. Rev. D 92 (2015) 115015 [arXiv:1507.03852] [INSPIRE].
  42. [42]
    A.E. Cárcamo Hernández and S.F. King, Muon anomalies and the SU(5) Yukawa relations, arXiv:1803.07367 [INSPIRE].
  43. [43]
    A.E. Cárcamo Hernández, R. Martinez and J. Nisperuza, S 3 discrete group as a source of the quark mass and mixing pattern in 331 models, Eur. Phys. J. C 75 (2015) 72 [arXiv:1401.0937] [INSPIRE].
  44. [44]
    A.E. Cárcamo Hernández, S. Kovalenko, H.N. Long and I. Schmidt, A variant of 3-3-1 model for the generation of the SM fermion mass and mixing pattern, JHEP 07 (2018) 144 [arXiv:1705.09169] [INSPIRE].
  45. [45]
    A.E. Cárcamo Hernández, S. Kovalenko, R. Pasechnik and I. Schmidt, Sequentially loop-generated quark and lepton mass hierarchies in an extended Inert Higgs Doublet model, arXiv:1901.02764 [INSPIRE].
  46. [46]
    A.E. Cárcamo Hernández, I. de Medeiros Varzielas and N.A. Neill, Novel Randall-Sundrum model with S 3 flavor symmetry, Phys. Rev. D 94 (2016) 033011 [arXiv:1511.07420] [INSPIRE].
  47. [47]
    C. Arbeláez, A.E. Cárcamo Hernández, S. Kovalenko and I. Schmidt, Radiative Seesaw-type Mechanism of Fermion Masses and Non-trivial Quark Mixing, Eur. Phys. J. C 77 (2017) 422 [arXiv:1602.03607] [INSPIRE].
  48. [48]
    M.D. Campos, A.E. Cárcamo Hernández, H. Päs and E. Schumacher, Higgsμτ as an indication for S 4 flavor symmetry, Phys. Rev. D 91 (2015) 116011 [arXiv:1408.1652] [INSPIRE].
  49. [49]
    A.E. Cárcamo Hernández and R. Martinez, A predictive 3-3-1 model with A 4 flavor symmetry, Nucl. Phys. B 905 (2016) 337 [arXiv:1501.05937] [INSPIRE].
  50. [50]
    A.E. Cárcamo Hernández, J. Vignatti and A. Zerwekh, Generating lepton masses and mixings with a heavy vector doublet, arXiv:1807.05321 [INSPIRE].
  51. [51]
    G. Chauhan, P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Perturbativity constraints on U(1)BL and left-right models and implications for heavy gauge boson searches, arXiv:1811.08789 [INSPIRE].
  52. [52]
    W. Grimus and L. Lavoura, The Seesaw mechanism at arbitrary order: Disentangling the small scale from the large scale, JHEP 11 (2000) 042 [hep-ph/0008179] [INSPIRE].
  53. [53]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  54. [54]
    W. Grimus and L. Lavoura, A Nonstandard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].
  55. [55]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].
  56. [56]
    K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].
  57. [57]
    P. Chen, G.-J. Ding, F. Gonzalez-Canales and J.W.F. Valle, Generalized μτ reflection symmetry and leptonic CP-violation, Phys. Lett. B 753 (2016) 644 [arXiv:1512.01551] [INSPIRE].
  58. [58]
    P. Chen, G.-J. Ding, F. Gonzalez-Canales and J.W.F. Valle, Classifying CP transformations according to their texture zeros: theory and implications, Phys. Rev. D 94 (2016) 033002 [arXiv:1604.03510] [INSPIRE].
  59. [59]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
  60. [60]
    W. Rodejohann and J.W.F. Valle, Symmetrical Parametrizations of the Lepton Mixing Matrix, Phys. Rev. D 84 (2011) 073011 [arXiv:1108.3484] [INSPIRE].
  61. [61]
    J.C. Gómez-Izquierdo, Non-minimal flavored S 3Z 2 left-right symmetric model, Eur. Phys. J. C 77 (2017) 551 [arXiv:1701.01747] [INSPIRE].
  62. [62]
    E.A. Garcés, J.C. Gómez-Izquierdo and F. Gonzalez-Canales, Flavored non-minimal left-right symmetric model fermion masses and mixings, Eur. Phys. J. C 78 (2018) 812 [arXiv:1807.02727] [INSPIRE].
  63. [63]
    KamLAND-Zen collaboration, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [Erratum ibid. 117 (2016) 109903] [arXiv:1605.02889] [INSPIRE].
  64. [64]
    GERDA collaboration, Improved Limit on Neutrinoless Double-β Decay of 76 Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].
  65. [65]
    Majorana collaboration, Search for Neutrinoless Double-β Decay in 76 Ge with the Majorana Demonstrator, Phys. Rev. Lett. 120 (2018) 132502 [arXiv:1710.11608] [INSPIRE].
  66. [66]
    CUORE collaboration, First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of 130 Te, Phys. Rev. Lett. 120 (2018) 132501 [arXiv:1710.07988] [INSPIRE].
  67. [67]
    EXO collaboration, Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120 (2018) 072701 [arXiv:1707.08707] [INSPIRE].
  68. [68]
    NEMO-3 collaboration, Measurement of the 2νββ Decay Half-Life and Search for the 0νββ Decay of 116 Cd with the NEMO-3 Detector, Phys. Rev. D 95 (2017) 012007 [arXiv:1610.03226] [INSPIRE].
  69. [69]
    CUORE collaboration, CUORE sensitivity to 0νββ decay, Eur. Phys. J. C 77 (2017) 532 [arXiv:1705.10816] [INSPIRE].
  70. [70]
    I. Abt et al., A New 76 Ge Double Beta Decay Experiment at LNGS: Letter of Intent, hep-ex/0404039 [INSPIRE].
  71. [71]
    Majorana collaboration, Recent Results from the Majorana Demonstrator, Int. J. Mod. Phys. Conf. Ser. 46 (2018) 1860049 [arXiv:1804.01582] [INSPIRE].
  72. [72]
    K. Bora, Updated values of running quark and lepton masses at GUT scale in SM, 2HDM and MSSM, Horizon 2 (2013) 112 [arXiv:1206.5909] [INSPIRE].Google Scholar
  73. [73]
    Z.-z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].
  74. [74]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  75. [75]
    S.P. Das, F.F. Deppisch, O. Kittel and J.W.F. Valle, Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC, Phys. Rev. D 86 (2012) 055006 [arXiv:1206.0256] [INSPIRE].
  76. [76]
    F.F. Deppisch, N. Desai and J.W.F. Valle, Is charged lepton flavor violation a high energy phenomenon?, Phys. Rev. D 89 (2014) 051302(R) [arXiv:1308.6789] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • A. E. Cárcamo Hernández
    • 1
    Email author
  • Sergey Kovalenko
    • 1
  • José W. F. Valle
    • 2
  • C. A. Vaquera-Araujo
    • 3
    • 4
  1. 1.Universidad Técnica Federico Santa María and Centro Científico-Tecnológico de Valpara ısoValparaísoChile
  2. 2.AHEP Group, Instituto de Física Corpuscular-CSIC/Universitat de ValenciaValenciaSpain
  3. 3.Departamento de Física, DCI, Campus LeónUniversidad de GuanajuatoGuanajuatoMexico
  4. 4.Consejo Nacional de Ciencia y TecnologíaCiudad de MéxicoMexico

Personalised recommendations