Advertisement

Journal of High Energy Physics

, 2019:64 | Cite as

Squashed toric manifolds and higher depth mock modular forms

  • Rajesh Kumar GuptaEmail author
  • Sameer Murthy
  • Caner Nazaroglu
Open Access
Regular Article - Theoretical Physics

Abstract

Squashed toric sigma models are a class of sigma models whose target space is a toric manifold in which the torus fibration is squashed away from the fixed points so as to produce a neck-like region. The elliptic genera of squashed toric-Calabi-Yau manifolds are known to obey the modular transformation property of holomorphic Jacobi forms, but have an explicit non-holomorphic dependence on the modular parameter. The elliptic genus of the simplest one-dimensional example is known to be a mixed mock Jacobi form, but the precise automorphic nature for the general case remained to be understood. We show that these elliptic genera fall precisely into a class of functions called higher-depth mock modular forms that have been formulated recently in terms of indefinite theta series. We also compute a generalization of the elliptic genera of these models corresponding to an additional set of charges corresponding to the toric symmetries. Finally we speculate on some relations of the elliptic genera of squashed toric models with the Vafa-Witten partition functions of \( \mathcal{N} \) = 4 SYM theory on ℂℙ2.

Keywords

Anomalies in Field and String Theories Conformal Field Theory Sigma Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.N. Schellekens and N.P. Warner, Anomalies and Modular Invariance in String Theory, Phys. Lett. B 177 (1986) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.N. Schellekens and N.P. Warner, Anomalies, Characters and Strings, Nucl. Phys. B 287 (1987) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    K. Pilch, A.N. Schellekens and N.P. Warner, Path Integral Calculation of String Anomalies, Nucl. Phys. B 287 (1987) 362 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, Elliptic Genera and Quantum Field Theory, Commun. Math. Phys. 109 (1987) 525 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    E. Witten, The index of the Dirac operator in loop space, (1987) [INSPIRE].
  6. [6]
    O. Alvarez, T.P. Killingback, M.L. Mangano and P. Windey, String Theory and Loop Space Index Theorems, Commun. Math. Phys. 111 (1987) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    O. Alvarez, T.P. Killingback, M.L. Mangano and P. Windey, The Dirac-Ramond operator in string theory and loop space index theorems, Nucl. Phys. Proc. Suppl. A 1 (1987) 189.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R.K. Gupta and S. Murthy, Squashed toric σ-models and mock modular forms, arXiv:1705.00649 [INSPIRE].
  9. [9]
    K. Hori and A. Kapustin, Duality of the fermionic 2-D black hole and N = 2 Liouville theory as mirror symmetry, JHEP 08 (2001) 045 [hep-th/0104202] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Zwegers, Mock Theta Functions, Ph.D. Thesis (2008) [arXiv:0807.4834] [INSPIRE].
  11. [11]
    J.H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004) 45.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Zagier, Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann), Astérisque 326 (2009) 143.MathSciNetzbMATHGoogle Scholar
  13. [13]
    A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing and Mock Modular Forms, arXiv:1208.4074 [INSPIRE].
  14. [14]
    K. Bringmann, A. Folsom, K. Ono and L. Rolen, Harmonic Maass forms and mock modular forms: theory and applications, American Mathematical Society Colloquium Publications, vol. 64, American Mathematical Society, Providence, RI (2017).Google Scholar
  15. [15]
    D. Zagier and S. Zwegers, unpublished.Google Scholar
  16. [16]
    S. Alexandrov, S. Banerjee, J. Manschot and B. Pioline, Indefinite theta series and generalized error functions, arXiv:1606.05495 [INSPIRE].
  17. [17]
    S. Kudla, Theta integrals and generalized error functions, arXiv:1608.03534.
  18. [18]
    M. Westerholt-Raum, Indefinite theta series on tetrahedral cones, arXiv:1608.08874.
  19. [19]
    C. Nazaroglu, r-Tuple Error Functions and Indefinite Theta Series of Higher-Depth, Commun. Num. Theor. Phys. 12 (2018) 581 [arXiv:1609.01224] [INSPIRE].
  20. [20]
    J. Funke and S. Kudla, Theta integrals and generalized error functions, II, arXiv:1708.02969.
  21. [21]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Murthy, A holomorphic anomaly in the elliptic genus, JHEP 06 (2014) 165 [arXiv:1311.0918] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
  24. [24]
    S.K. Ashok, E. Dell’Aquila and J. Troost, Higher Poles and Crossing Phenomena from Twisted Genera, JHEP 08 (2014) 087 [arXiv:1404.7396] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.C. da Silva, Symplectic Toric Manifolds, Birkhäuser Series Advanced Courses in Mathematics, CRM Barcelona, Birkhauser, Springer, (2003).Google Scholar
  26. [26]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465 [arXiv:1305.0533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d \( \mathcal{N} \) = 2 Gauge Theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J.A. Harvey and S. Murthy, Moonshine in Fivebrane Spacetimes, JHEP 01 (2014) 146 [arXiv:1307.7717] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    N.-P. Skoruppa and D. Zagier, Jacobi forms and a certain space of modular forms, Invent. Math. 94 (1988) 113.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA (1985) [ https://doi.org/10.1007/978-1-4684-9162-3].
  31. [31]
    J. Troost, The non-compact elliptic genus: mock or modular, JHEP 06 (2010) 104 [arXiv:1004.3649] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    T. Eguchi and Y. Sugawara, Non-holomorphic Modular Forms and SL(2, ℝ)/U(1) Superconformal Field Theory, JHEP 03 (2011) 107 [arXiv:1012.5721] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    S.K. Ashok and J. Troost, A Twisted Non-compact Elliptic Genus, JHEP 03 (2011) 067 [arXiv:1101.1059] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G.W. Moore and E. Witten, Integration over the u plane in Donaldson theory, Adv. Theor. Math. Phys. 1 (1997) 298 [hep-th/9709193] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    G. Korpas and J. Manschot, Donaldson-Witten theory and indefinite theta functions, JHEP 11 (2017) 083 [arXiv:1707.06235] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S. Alexandrov, S. Banerjee, J. Manschot and B. Pioline, Multiple D3-instantons and mock modular forms I, Commun. Math. Phys. 353 (2017) 379 [arXiv:1605.05945] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Alexandrov, S. Banerjee, J. Manschot and B. Pioline, Multiple D3-instantons and mock modular forms II, Commun. Math. Phys. 359 (2018) 297 [arXiv:1702.05497] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    K. Bringmann, J. Kaszian and L. Rolen, Higher-depth mock modular forms arising in gromov-witten theory of elliptic orbifolds, arXiv:1608.08588.
  40. [40]
    J. Manschot, Vafa-Witten theory and iterated integrals of modular forms, arXiv:1709.10098 [INSPIRE].
  41. [41]
    K. Bringmann and C. Nazaroglu, An exact formula for U(3) Vafa-Witten invariants on2, arXiv:1803.09270 [INSPIRE].
  42. [42]
    S. Alexandrov, G.W. Moore, A. Neitzke and B. Pioline, ℝ3 Index for Four-Dimensional N = 2 Field Theories, Phys. Rev. Lett. 114 (2015) 121601 [arXiv:1406.2360] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    B. Pioline, Wall-crossing made smooth, JHEP 04 (2015) 092 [arXiv:1501.01643] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    S. Murthy and B. Pioline, Mock modularity from black hole scattering states, JHEP 12 (2018) 119 [arXiv:1808.05606] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Manschot, Sheaves on2 and generalized Appell functions, Adv. Theor. Math. Phys. 21 (2017) 655 [arXiv:1407.7785] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S.K. Ashok and J. Troost, Elliptic genera and real Jacobi forms, JHEP 01 (2014) 082 [arXiv:1310.2124] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank 2 on P 2, J. Reine Angew. Math. 453 (1994) 193.MathSciNetzbMATHGoogle Scholar
  48. [48]
    A.A. Klyachko, Moduli of vector bundles and numbers of classes, Funct. Anal. Appl. 25 (1991) 67.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    K. Bringmann and J. Manschot, From sheaves on P 2 to a generalization of the Rademacher expansion, Am. J. Math. 135 (2013) 1039 [arXiv:1006.0915] [INSPIRE].CrossRefzbMATHGoogle Scholar
  50. [50]
    J.A. Minahan, D. Nemeschansky, C. Vafa and N.P. Warner, E strings and N = 4 topological Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS five-branes and holography, JHEP 10 (1998) 004 [hep-th/9808149] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    A. Giveon, D. Kutasov and O. Pelc, Holography for noncritical superstrings, JHEP 10 (1999) 035 [hep-th/9907178] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    S. Murthy, Notes on noncritical superstrings in various dimensions, JHEP 11 (2003) 056 [hep-th/0305197] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D. Kutasov and N. Seiberg, Noncritical superstrings, Phys. Lett. B 251 (1990) 67 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    M.-F. Vignéras, Séries thêta des formes quadratiques indéfinies, Springer Lect. Notes 627 (1977) 227.CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Rajesh Kumar Gupta
    • 1
    Email author
  • Sameer Murthy
    • 1
  • Caner Nazaroglu
    • 2
  1. 1.Department of MathematicsKing’s College LondonLondonU.K.
  2. 2.Mathematical InstituteUniversity of CologneCologneGermany

Personalised recommendations