Journal of High Energy Physics

, 2019:60 | Cite as

Argyres-Douglas theories, Painlevé II and quantum mechanics

  • Alba Grassi
  • Jie GuEmail author
Open Access
Regular Article - Theoretical Physics


We show in details that the all order genus expansion of the two-cut Hermitian cubic matrix model reproduces the perturbative expansion of the H1 Argyres-Douglas theory coupled to the Ω background. In the self-dual limit we use the Painlevé/gauge correspondence and we show that, after summing over all instanton sectors, the two-cut cubic matrix model computes the tau function of Painlevé II without taking any double scaling limit or adding any external fields. We decode such solution within the context of transseries. Finally in the Nekrasov-Shatashvili limit we connect the H1 and the H0 Argyres-Douglas theories to the quantum mechanical models with cubic and double well potentials.


Matrix Models Supersymmetric Gauge Theory Conformal Field Theory Integrable Hierarchies 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    T. Nishinaka and C. Rim, Matrix models for irregular conformal blocks and Argyres-Douglas theories, JHEP 10 (2012) 138 [arXiv:1207.4480] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Rim, Irregular conformal block and its matrix model, arXiv:1210.7925 [INSPIRE].
  5. [5]
    K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Cubic pencils and Painleve Hamiltonians, nlin/0403009.
  6. [6]
    O. Gamayun, N. Iorgov and O. Lisovyy, Conformal field theory of Painlevé VI, JHEP 10 (2012) 038 [Erratum ibid. 10 (2012) 183] [arXiv:1207.0787] [INSPIRE].
  7. [7]
    O. Gamayun, N. Iorgov and O. Lisovyy, How instanton combinatorics solves Painlevé VI, V and IIIs, J. Phys. A 46 (2013) 335203 [arXiv:1302.1832] [INSPIRE].zbMATHGoogle Scholar
  8. [8]
    G. Bonelli, O. Lisovyy, K. Maruyoshi, A. Sciarappa and A. Tanzini, On Painlevé/gauge theory correspondence, arXiv:1612.06235 [INSPIRE].
  9. [9]
    V.A. Kazakov, I.K. Kostov and N.A. Nekrasov, D particles, matrix integrals and KP hierarchy, Nucl. Phys. B 557 (1999) 413 [hep-th/9810035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2-D Gravity and random matrices, Phys. Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    F. Cachazo, K.A. Intriligator and C. Vafa, A Large N duality via a geometric transition, Nucl. Phys. B 603 (2001) 3 [hep-th/0103067] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A. Klemm, M. Mariño and S. Theisen, Gravitational corrections in supersymmetric gauge theory and matrix models, JHEP 03 (2003) 051 [hep-th/0211216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Klemm, M. Mariño and M. Rauch, Direct Integration and Non-Perturbative Effects in Matrix Models, JHEP 10 (2010) 004 [arXiv:1002.3846] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M.-x. Huang, Dijkgraaf-Vafa conjecture and β-deformed matrix models, JHEP 07 (2013) 173 [arXiv:1305.1103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    R. Schiappa and R. Vaz, The Resurgence of Instantons: Multi-Cut Stokes Phases and the Painleve II Equation, Commun. Math. Phys. 330 (2014) 655 [arXiv:1302.5138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Its, O. Lisovyy and A. Prokhorov, Monodromy dependence and connection formulae for isomonodromic tau functions, Duke Math. J. 167 (2018) 1347 [arXiv:1604.03082] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Codesido and M. Mariño, Holomorphic Anomaly and Quantum Mechanics, J. Phys. A 51 (2018) 055402 [arXiv:1612.07687] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    R. Dijkgraaf, S. Gukov, V.A. Kazakov and C. Vafa, Perturbative analysis of gauged matrix models, Phys. Rev. D 68 (2003) 045007 [hep-th/0210238] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    K. Maruyoshi, β-Deformed Matrix Models and 2d/4d Correspondence, in New Dualities of Supersymmetric Gauge Theories, J. Teschner ed., pp. 121–157 (2016) [] [arXiv:1412.7124] [INSPIRE].
  21. [21]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Quantum Hitchin Systems via β -Deformed Matrix Models, Commun. Math. Phys. 358 (2018) 1041 [arXiv:1104.4016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    T. Masuda and H. Suzuki, Periods and prepotential of N = 2 SU(2) supersymmetric Yang-Mills theory with massive hypermultiplets, Int. J. Mod. Phys. A 12 (1997) 3413 [hep-th/9609066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Wild Quiver Gauge Theories, JHEP 02 (2012) 031 [arXiv:1112.1691] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I, JHEP 12 (2012) 050 [arXiv:1203.1052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    G. Akemann, Higher genus correlators for the Hermitian matrix model with multiple cuts, Nucl. Phys. B 482 (1996) 403 [hep-th/9606004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, Nucl. Phys. B 405 (1993) 279 [hep-th/9302103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion, Commun. Num. Theor. Phys. 1 (2007) 347 [math-ph/0702045] [INSPIRE].
  28. [28]
    M.-x. Huang and A. Klemm, Direct integration for general Ω backgrounds, Adv. Theor. Math. Phys. 16 (2012) 805 [arXiv:1009.1126] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D. Krefl and J. Walcher, Extended Holomorphic Anomaly in Gauge Theory, Lett. Math. Phys. 95 (2011) 67 [arXiv:1007.0263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M.-x. Huang and A. Klemm, Holomorphic Anomaly in Gauge Theories and Matrix Models, JHEP 09 (2007) 054 [hep-th/0605195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M.-x. Huang and A. Klemm, Holomorphicity and Modularity in Seiberg-Witten Theories with Matter, JHEP 07 (2010) 083 [arXiv:0902.1325] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Bonelli, A. Grassi and A. Tanzini, Seiberg-Witten theory as a Fermi gas, Lett. Math. Phys. 107 (2017) 1 [arXiv:1603.01174] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G. Bonelli, A. Grassi and A. Tanzini, New results in \( \mathcal{N} \) = 2 theories from non-perturbative string, Annales Henri Poincaré 19 (2018) 743 [arXiv:1704.01517] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Mariño and S. Zakany, Matrix models from operators and topological strings, Annales Henri Poincaré 17 (2016) 1075 [arXiv:1502.02958] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    R. Kashaev, M. Mariño and S. Zakany, Matrix models from operators and topological strings, 2, Annales Henri Poincaré 17 (2016) 2741 [arXiv:1505.02243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Codesido, J. Gu and M. Mariño, Operators and higher genus mirror curves, JHEP 02 (2017) 092 [arXiv:1609.00708] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Codesido, A. Grassi and M. Mariño, Spectral Theory and Mirror Curves of Higher Genus, Annales Henri Poincaré 18 (2017) 559 [arXiv:1507.02096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    G. Bonelli, A. Grassi and A. Tanzini, Quantum curves and q-deformed Painlevé equations, arXiv:1710.11603 [INSPIRE].
  41. [41]
    A. Mironov and A. Morozov, On determinant representation and integrability of Nekrasov functions, Phys. Lett. B 773 (2017) 34 [arXiv:1707.02443] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A. Mironov and A. Morozov, q-Painlevé equation from Virasoro constraints, Phys. Lett. B 785 (2018) 207 [arXiv:1708.07479] [INSPIRE].
  43. [43]
    A. Its, O. Lisovyy and Y. Tykhyy, Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks, arXiv:1403.1235 [INSPIRE].
  44. [44]
    M. Mariño, R. Schiappa and M. Weiss, Multi-Instantons and Multi-Cuts, J. Math. Phys. 50 (2009) 052301 [arXiv:0809.2619] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    G. Bonnet, F. David and B. Eynard, Breakdown of universality in multicut matrix models, J. Phys. A 33 (2000) 6739 [cond-mat/0003324] [INSPIRE].
  46. [46]
    B. Eynard and M. Mariño, A Holomorphic and background independent partition function for matrix models and topological strings, J. Geom. Phys. 61 (2011) 1181 [arXiv:0810.4273] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    B. Eynard, Large N expansion of convergent matrix integrals, holomorphic anomalies and background independence, JHEP 03 (2009) 003 [arXiv:0802.1788] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    G. Felder and R. Riser, Holomorphic matrix integrals, Nucl. Phys. B 691 (2004) 251 [hep-th/0401191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in Proceedings, 16th International Congress on Mathematical Physics (ICMP09), Prague, Czech Republic, August 3–8, 2009, pp. 265–289 (2009) [] [arXiv:0908.4052] [INSPIRE].
  50. [50]
    A. Grassi and J. Gu, BPS relations from spectral problems and blowup equations, arXiv:1609.05914 [INSPIRE].
  51. [51]
    A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: The Case of SU(N), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [INSPIRE].ADSzbMATHGoogle Scholar
  52. [52]
    G. Basar, G.V. Dunne and M. Ünsal, Quantum Geometry of Resurgent Perturbative/Nonperturbative Relations, JHEP 05 (2017) 087 [arXiv:1701.06572] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Aganagic, M.C.N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of Refined Topological Strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    A. Grassi, Y. Hatsuda and M. Mariño, Topological Strings from Quantum Mechanics, Annales Henri Poincaré 17 (2016) 3177 [arXiv:1410.3382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    J. Gu, A. Klemm, M. Mariño and J. Reuter, Exact solutions to quantum spectral curves by topological string theory, JHEP 10 (2015) 025 [arXiv:1506.09176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    X. Wang, G. Zhang and M.-x. Huang, New Exact Quantization Condition for Toric Calabi-Yau Geometries, Phys. Rev. Lett. 115 (2015) 121601 [arXiv:1505.05360] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    K. Sun, X. Wang and M.-x. Huang, Exact Quantization Conditions, Toric Calabi-Yau and Nonperturbative Topological String, JHEP 01 (2017) 061 [arXiv:1606.07330] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Grassi and M. Mariño, The complex side of the TS/ST correspondence, J. Phys. A 52 (2019) 055402 [arXiv:1708.08642] [INSPIRE].ADSGoogle Scholar
  61. [61]
    J. Dunham, The Wentzel-Brillouin-Kramers method of solving the wave equation, Phys. Rev. 41 (1932) 713.ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    C.M. Bender, K. Olaussen and P.S. Wang, Numerological Analysis of the WKB Approximation in Large Order, Phys. Rev. D 16 (1977) 1740 [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    A. Galindo and P. Pascual, Quantum Mechanics, vol. 2, Springer-Verlag (1990).Google Scholar
  64. [64]
    A. Voros, The return of the quartic oscillator. The complex WKB method, Ann. Inst. H. Poincaré A 39 (1983) 211.Google Scholar
  65. [65]
    A. Voros, Spectre de l’équation de Schrödinger et méthode BKW, Publications Mathématiques d’Orsay (1981).Google Scholar
  66. [66]
    H.J. Silverstone, JWKB connection-formula problem revisited via Borel summation, Phys. Rev. Lett. 55 (1985) 2523.ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    S. Codesido, M. Mariño and R. Schiappa, Non-Perturbative Quantum Mechanics from Non-Perturbative Strings, arXiv:1712.02603 [INSPIRE].
  68. [68]
    R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent Transseries and the Holomorphic Anomaly, Annales Henri Poincaré 17 (2016) 331 [arXiv:1308.1695] [INSPIRE].
  69. [69]
    A. Grassi, Spectral determinants and quantum theta functions, J. Phys. A 49 (2016) 505401 [arXiv:1604.06786] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  70. [70]
    D. Gaiotto, Opers and TBA, arXiv:1403.6137 [INSPIRE].
  71. [71]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    K. Ito and H. Shu, ODE/IM correspondence and the Argyres-Douglas theory, JHEP 08 (2017) 071 [arXiv:1707.03596] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    P. Dorey, C. Dunning and R. Tateo, The ODE/IM Correspondence, J. Phys. A 40 (2007) R205 [hep-th/0703066] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  74. [74]
    P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  75. [75]
    M.R. Douglas and S.H. Shenker, Strings in Less Than One-Dimension, Nucl. Phys. B 335 (1990) 635 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    E. Brézin and V.A. Kazakov, Exactly Solvable Field Theories of Closed Strings, Phys. Lett. B 236 (1990) 144 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    D.J. Gross and A.A. Migdal, Nonperturbative Two-Dimensional Quantum Gravity, Phys. Rev. Lett. 64 (1990) 127 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and A. Zabrodin, Towards unified theory of 2-D gravity, Nucl. Phys. B 380 (1992) 181 [hep-th/9201013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    M.R. Douglas, N. Seiberg and S.H. Shenker, Flow and Instability in Quantum Gravity, Phys. Lett. B 244 (1990) 381 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    C. Crnković and G. Moore, Multicritical multicut matrix models, Phys. Lett. B 257 (1991) 322 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A. Mironov, A. Morozov and G.W. Semenoff, Unitary matrix integrals in the framework of generalized Kontsevich model. 1. Brezin-Gross-Witten model, Int. J. Mod. Phys. A 11 (1996) 5031 [hep-th/9404005] [INSPIRE].
  82. [82]
    O. Lisovyy and J. Roussillon, On the connection problem for Painlevé I, J. Phys. A 50 (2017) 255202 [arXiv:1612.08382] [INSPIRE].ADSzbMATHGoogle Scholar
  83. [83]
    C. Cordova, B. Heidenreich, A. Popolitov and S. Shakirov, Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models, Commun. Math. Phys. 361 (2018) 1235 [arXiv:1611.03142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Simons Center for Geometry and PhysicsSUNYStony BrookU.S.A.
  2. 2.Laboratoire de Physique Théorique de l’ École Normale Supérieure, CNRS, PSL Research University, Sorbonne Universités, UPMCParisFrance

Personalised recommendations