Advertisement

Journal of High Energy Physics

, 2019:52 | Cite as

Topologically twisted SUSY gauge theory, gauge-Bethe correspondence and quantum cohomology

  • Hee-Joong ChungEmail author
  • Yutaka Yoshida
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate the partition function and correlation functions in A-twisted 2d \( \mathcal{N} \) = (2, 2) U(N) gauge theories and topologically twisted 3d \( \mathcal{N} \) = 2 U(N) gauge theories containing an adjoint chiral multiplet with particular choices of R-charges and the magnetic fluxes for flavor symmetries. According to the Gauge-Bethe correspondence, they correspond to the Heisenberg XXX1/2 and XXZ1/2 spin chain models, respectively. We identify the partition function with the inverse of the norm of the Bethe eigenstate. Correlation functions are identified to coefficients of the expectation value of Baxter Q-operator. In addition, we consider correlation functions of 2d \( \mathcal{N} \) = (2, 2)* theories and their relations to the equivariant integration of the equivariant quantum cohomology classes of the cotangent bundle of Grassmann manifolds and the equivariant quantum cohomology ring. Also, we study the twisted chiral ring relations of supersymmetric Wilson loops in 3d \( \mathcal{N} \) = 2* theories and the Bethe subalgebra of the XXZ1/2 spin chain models.

Keywords

Supersymmetric Gauge Theory Supersymmetry and Duality Differential and Algebraic Geometry Integrable Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE].
  2. [2]
    N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    C. Closset, S. Cremonesi and D.S. Park, The equivariant A-twist and gauged linear σ-models on the two-sphere, JHEP 06 (2015) 076 [arXiv:1504.06308] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    K. Ohta and Y. Yoshida, Non-Abelian localization for supersymmetric Yang-Mills-Chern-Simons theories on Seifert manifold, Phys. Rev. D 86 (2012) 105018 [arXiv:1205.0046] [INSPIRE].ADSGoogle Scholar
  6. [6]
    C. Closset and I. Shamir, The N = 1 chiral multiplet on T 2 × S 2 and supersymmetric localization, JHEP 03 (2014) 040 [arXiv:1311.2430] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Nishioka and I. Yaakov, Generalized indices for N = 1 theories in four-dimensions, JHEP 12 (2014) 150 [arXiv:1407.8520] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Honda and Y. Yoshida, Supersymmetric index on T 2 × S 2 and elliptic genus, arXiv:1504.04355 [INSPIRE].
  9. [9]
    V. Gorbounov, R. Rimányi, V. Tarasov and A. Varchenko, Cohomology of a flag variety as a Yangian Bethe algebra, J. Geom. Phys. 74 (2013) 56 [arXiv:1204.5138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Rimányi, V. Tarasov and A. Varchenko, Trigonometric weight functions as K-theoretic stable envelope maps for the cotangent bundle of a flag variety, J. Geom. Phys. 94 (2015) 81 [arXiv:1411.0478].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, in Proceedings, 16th International Congress on Mathematical Physics (ICMP09), Prague, Czech Republic, 3–8 August 2009, World Scientific, Singapore (2010), pg. 265 [arXiv:0908.4052] [INSPIRE].
  12. [12]
    V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum inverse scattering method and correlation functions, volume 3, Cambridge University Press, Cambridge, U.K. (1997).Google Scholar
  13. [13]
    L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, in Relativistic gravitation and gravitational radiation. Proceedings, School of Physics, Les Houches, France, 26 September–6 October 1995, pg. 149 [hep-th/9605187] [INSPIRE].
  14. [14]
    H.J. de Vega, Families of commuting transfer matrices and integrable models with disorder, Nucl. Phys. B 240 (1984) 495 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    V.E. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys. 86 (1982) 391 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Okuda and Y. Yoshida, G/G gauged WZW model and Bethe ansatz for the phase model, JHEP 11 (2012) 146 [arXiv:1209.3800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Okuda and Y. Yoshida, G/G gauged WZW-matter model, Bethe ansatz for q-boson model and commutative Frobenius algebra, JHEP 03 (2014) 003 [arXiv:1308.4608] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Gukov and D. Pei, Equivariant Verlinde formula from fivebranes and vortices, Commun. Math. Phys. 355 (2017) 1 [arXiv:1501.01310] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Okuda and Y. Yoshida, Gauge/Bethe correspondence on S 1 × Σh and index over moduli space, arXiv:1501.03469 [INSPIRE].
  20. [20]
    N.A. Nekrasov and S.L. Shatashvili, Bethe/gauge correspondence on curved spaces, JHEP 01 (2015) 100 [arXiv:1405.6046] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D.R. Morrison and M.R. Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287 [INSPIRE].
  23. [23]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [AMS/IP Stud. Adv. Math. 1 (1996) 143] [hep-th/9301042] [INSPIRE].
  24. [24]
    F. Benini, D.S. Park and P. Zhao, Cluster algebras from dualities of 2d N = (2,2) quiver gauge theories, Commun. Math. Phys. 340 (2015) 47 [arXiv:1406.2699] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Bullimore, H.-C. Kim and P. Koroteev, Defects and quantum Seiberg-Witten geometry, JHEP 05 (2015) 095 [arXiv:1412.6081] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    C. Korff, Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra, Commun. Math. Phys. 318 (2013) 173 [arXiv:1110.6356] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  28. [28]
    C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories, JHEP 08 (2016) 059 [arXiv:1605.06531] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Korea Institute for Advanced StudySeoulRepublic of Korea

Personalised recommendations