Advertisement

Journal of High Energy Physics

, 2019:49 | Cite as

On the amplitudes for the CP-conserving K±(KS) → π±(π0)+ rare decay modes

  • Giancarlo D’Ambrosio
  • David GreynatEmail author
  • Marc Knecht
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

The amplitudes for the rare decay modes K±π±+ and KSπ0+ are studied with the aim of obtaining predictions for them, such as to enable the possibility to search for violations of lepton-flavour universality in the kaon sector. The issue is first addressed from the perspective of the low-energy expansion, and a two-loop representation of the corresponding form factors is constructed, leaving as unknown quantities their values and slopes at vanishing momentum transfer. In a second step a phenomenological determination of the latter is proposed. It consists of the contribution of the resonant two-pion state in the P wave, and of the leading short-distance contribution determined by the operator-product expansion. The interpolation between the two energy regimes is described by an infinite tower of zero-width resonances matching the QCD short-distance behaviour. Finally, perspectives for future improvements in the theoretical understanding of these amplitudes are discussed.

Keywords

Kaon Physics Chiral Lagrangians 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portolés, Kaon Decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Ceccucci, Review and Outlook on Kaon Physics, Acta Phys. Polon. B 49 (2018) 1079 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Ceccucci on behalf of the NA62 collaboration, In-flight Search for \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) : First NA62 Results, PoS(ALPS2018)006.
  4. [4]
    T.K. Komatsubara, Experiments with K-Meson Decays, Prog. Part. Nucl. Phys. 67 (2012) 995 [arXiv:1203.6437] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    KOTO collaboration, \( {K}_L^0\to {\pi}^0\nu \overline{\nu} \) at KOTO, in 8th International Workshop on the CKM Unitarity Triangle (CKM 2014) Vienna, Austria, September 8–12, 2014, arXiv:1411.4250 [INSPIRE].
  6. [6]
    KOTO collaboration, Search for the \( {K}_L^0\to {\pi}^0\nu \overline{\nu} \) and K Lπ 0 X 0 decays at the J-PARC KOTO experiment, Phys. Rev. Lett. 122 (2019) 021802 [arXiv:1810.09655] [INSPIRE].
  7. [7]
    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  8. [8]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  9. [9]
    C. Bobeth, G. Hiller and G. Piranishvili, Angular distributions of \( \overline{B}\to \overline{K}{\ell}^{+}{\ell}^{-} \) decays, JHEP 12 (2007) 040 [arXiv:0709.4174] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Bordone, G. Isidori and A. Pattori, On the Standard Model predictions for R K and \( {R}_{K^{*}} \), Eur. Phys. J. C 76 (2016) 440 [arXiv:1605.07633] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of BK * + observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, On the impact of power corrections in the prediction of BK * μ + μ observables, JHEP 12 (2014) 125 [arXiv:1407.8526] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK * μ + μ Anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].ADSGoogle Scholar
  14. [14]
    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Jäger and J. Martin Camalich, Reassessing the discovery potential of the BK * + decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D 93 (2016) 014028 [arXiv:1412.3183] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Aristizabal Sierra and A. Vicente, Explaining the CMS Higgs flavor violating decay excess, Phys. Rev. D 90 (2014) 115004 [arXiv:1409.7690] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgsμτ in Abelian and non-Abelian flavor symmetry models, Nucl. Phys. B 896 (2015) 281 [arXiv:1412.3671] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining hμ ± τ , BK * μ + μ and B + μ /BKe + e in a two-Higgs-doublet model with gauged L μL τ, Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik, N. Košnik and I. Nišandžic, New Physics Models Facing Lepton Flavor Violating Higgs Decays at the Percent Level, JHEP 06 (2015) 108 [arXiv:1502.07784] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Y. Omura, E. Senaha and K. Tobe, Lepton-flavor-violating Higgs decay hμτ and muon anomalous magnetic moment in a general two Higgs doublet model, JHEP 05 (2015) 028 [arXiv:1502.07824] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    I. de Medeiros Varzielas, O. Fischer and V. Maurer, \( \mathbb{A} \) 4 symmetry at colliders and in the universe, JHEP 08 (2015) 080 [arXiv:1504.03955] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    A.J. Buras, F. De Fazio and J. Girrbach, 331 models facing new b + μ data, JHEP 02 (2014) 112 [arXiv:1311.6729] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries, Phys. Rev. D 91 (2015) 075006 [arXiv:1503.03477] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S.L. Glashow, D. Guadagnoli and K. Lane, Lepton Flavor Violation in B Decays?, Phys. Rev. Lett. 114 (2015) 091801 [arXiv:1411.0565] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μL τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Gauld, F. Goertz and U. Haisch, An explicit Z’-boson explanation of the BK * μ + μ anomaly, JHEP 01 (2014) 069 [arXiv:1310.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.J. Buras and J. Girrbach, Left-handed Zand Z FCNC quark couplings facing new b + μ data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Gauld, F. Goertz and U. Haisch, On minimal Zexplanations of the BK * μ + μ anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C. Niehoff, P. Stangl and D.M. Straub, Violation of lepton flavour universality in composite Higgs models, Phys. Lett. B 747 (2015) 182 [arXiv:1503.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Aristizabal Sierra, F. Staub and A. Vicente, Shedding light on the bs anomalies with a dark sector, Phys. Rev. D 92 (2015) 015001 [arXiv:1503.06077] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Crivellin, L. Hofer, J. Matias, U. Nierste, S. Pokorski and J. Rosiek, Lepton-flavour violating B decays in generic Zmodels, Phys. Rev. D 92 (2015) 054013 [arXiv:1504.07928] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Celis, J. Fuentes-Martin, M. Jung and H. Serodio, Family nonuniversal Z’ models with protected flavor-changing interactions, Phys. Rev. D 92 (2015) 015007 [arXiv:1505.03079] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Carmona and F. Goertz, Lepton Flavor and Nonuniversality from Minimal Composite Higgs Setups, Phys. Rev. Lett. 116 (2016) 251801 [arXiv:1510.07658] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Testing leptoquark models in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 88 (2013) 094012 [arXiv:1309.0301] [INSPIRE].ADSGoogle Scholar
  35. [35]
    I. de Medeiros Varzielas and G. Hiller, Clues for flavor from rare lepton and quark decays, JHEP 06 (2015) 072 [arXiv:1503.01084] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    D. Bečirević, S. Fajfer and N. Košnik, Lepton flavor nonuniversality in bsℓ + processes, Phys. Rev. D 92 (2015) 014016 [arXiv:1503.09024] [INSPIRE].ADSGoogle Scholar
  37. [37]
    B. Gripaios, M. Nardecchia and S.A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006 [arXiv:1412.1791] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    L. Calibbi, A. Crivellin and T. Ota, Effective Field Theory Approach to bsℓℓ () , \( B\to {K}^{\left(*\right)}\nu \overline{\nu} \) and BD (*) τν with Third Generation Couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].
  39. [39]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the \( {R}_{D^{\left(\ast \right)}} \) , R K and (g − 2)μ Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Fajfer and N. Košnik, Vector leptoquark resolution of R K and \( {R}_{D^{\left(\ast \right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Greljo, G. Isidori and D. Marzocca, On the breaking of Lepton Flavor Universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Crivellin, G. D’Ambrosio, M. Hoferichter and L.C. Tunstall, Violation of lepton flavor and lepton flavor universality in rare kaon decays, Phys. Rev. D 93 (2016) 074038 [arXiv:1601.00970] [INSPIRE].ADSGoogle Scholar
  45. [45]
    E. Goudzovski, New results and prospects in kaon physics from the NA62 experiment, talk at the XIIIth Quark Confinement and Hadron Spectrum Conference, University of Maynooth, Ireland, 31 July — 6 August 2018, https://indico.cern.ch/event/648004/contributions/2987967/.
  46. [46]
    LHCb collaboration, Physics case for an LHCb Upgrade II — Opportunities in flavour physics and beyond, in the HL-LHC era, arXiv:1808.08865 [INSPIRE].
  47. [47]
    A.A. Alves Junior et al., Prospects for Measurements with Strange Hadrons at LHCb, arXiv:1808.03477 [INSPIRE].
  48. [48]
    G. Isidori, G. Martinelli and P. Turchetti, Rare kaon decays on the lattice, Phys. Lett. B 633 (2006) 75 [hep-lat/0506026] [INSPIRE].
  49. [49]
    RBC and UKQCD collaborations, Prospects for a lattice computation of rare kaon decay amplitudes: Kπℓ + decays, Phys. Rev. D 92 (2015) 094512 [arXiv:1507.03094] [INSPIRE].
  50. [50]
    N.H. Christ, X. Feng, A. Juttner, A. Lawson, A. Portelli and C.T. Sachrajda, First exploratory calculation of the long-distance contributions to the rare kaon decays Kπℓ + , Phys. Rev. D 94 (2016) 114516 [arXiv:1608.07585] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C. Alliegro et al., Study of the decay K +π + e + e , Phys. Rev. Lett. 68 (1992) 278 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    E787 collaboration, Observation of the decay K +π + μ + μ , Phys. Rev. Lett. 79 (1997) 4756 [hep-ex/9708012] [INSPIRE].
  53. [53]
    E865 collaboration, A new measurement of the rare decay K +π + μ + μ , Phys. Rev. Lett. 84 (2000) 2580 [hep-ex/9910047] [INSPIRE].
  54. [54]
    HyperCP collaboration, Observation of the decay K π μ + μ and measurements of the branching ratios for K ±π ± μ + μ , Phys. Rev. Lett. 88 (2002) 111801 [hep-ex/0110033] [INSPIRE].
  55. [55]
    E865 collaboration, A new measurement of the properties of the rare decay K +π + e + e , Phys. Rev. Lett. 83 (1999) 4482 [hep-ex/9907045] [INSPIRE].
  56. [56]
    NA48/2 collaboration, Precise measurement of the K ±π ± e + e decay, Phys. Lett. B 677 (2009) 246 [arXiv:0903.3130] [INSPIRE].
  57. [57]
    NA48/2 collaboration, New measurement of the K ±π ± μ + μ decay, Phys. Lett. B 697 (2011) 107 [arXiv:1011.4817] [INSPIRE].
  58. [58]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  59. [59]
    NA48/1 collaboration, Observation of the rare decay K Sπ 0 e + e , Phys. Lett. B 576 (2003) 43 [hep-ex/0309075] [INSPIRE].
  60. [60]
    NA48/1 collaboration, Observation of the rare decay K Sπ 0 μ + μ , Phys. Lett. B 599 (2004) 197 [hep-ex/0409011] [INSPIRE].
  61. [61]
    G. Ecker, A. Pich and E. de Rafael, Kπℓ + Decays in the Effective Chiral Lagrangian of the Standard Model, Nucl. Phys. B 291 (1987) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    G. Ecker, A. Pich and E. de Rafael, Radiative Kaon Decays and CP-violation in Chiral Perturbation Theory, Nucl. Phys. B 303 (1988) 665 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    G. D’Ambrosio, G. Ecker, G. Isidori and J. Portolés, The decays Kπℓ + beyond leading order in the chiral expansion, JHEP 08 (1998) 004 [hep-ph/9808289] [INSPIRE].
  64. [64]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J. Gasser and H. Leutwyler, On the Low-energy Structure of QCD, Phys. Lett. 125B (1983) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S. Friot, D. Greynat and E. De Rafael, Rare kaon decays revisited, Phys. Lett. B 595 (2004) 301 [hep-ph/0404136] [INSPIRE].
  69. [69]
    E. Coluccio Leskow, G. D’Ambrosio, D. Greynat and A. Nath, Kπℓ + form factor in the large-N c and cut-off regularization method, Phys. Rev. D 93 (2016) 094031 [arXiv:1603.09721] [INSPIRE].ADSGoogle Scholar
  70. [70]
    A.Z. Dubničkovà, S. Dubnicka, E. Goudzovski, V.N. Pervushin and M. Secansky, Kaon decay probe of the weak static interaction, Phys. Part. Nucl. Lett. 5 (2008) 76 [hep-ph/0611175] [INSPIRE].
  71. [71]
    A.J. Buras, The 1/n Approach To Nonleptonic Weak Interactions, in CP Violation, C. Jarlskog ed., Adv. Ser. Direct. High Energy Phys. 3 (1989) 575 [INSPIRE].
  72. [72]
    J. Portolés, Kπℓ + : Status and update, J. Phys. Conf. Ser. 800 (2017) 012030 [arXiv:1611.07195] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    B. Ananthanarayan and I. Sentitemsu Imsong, The 27-plet contributions to the CP-conserving Kπℓ + decays, J. Phys. G 39 (2012) 095002 [arXiv:1207.0567] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M.K. Gaillard and B.W. Lee, ΔI = 1/2 Rule for Nonleptonic Decays in Asymptotically Free Field Theories, Phys. Rev. Lett. 33 (1974) 108 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. Altarelli and L. Maiani, Octet Enhancement of Nonleptonic Weak Interactions in Asymptotically Free Gauge Theories, Phys. Lett. 52B (1974) 351 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Light Quarks and the Origin of the ΔI = 1/2 Rule in the Nonleptonic Decays of Strange Particles, Nucl. Phys. B 120 (1977) 316 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    E. Witten, Short Distance Analysis of Weak Interactions, Nucl. Phys. B 122 (1977) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M.B. Wise and E. Witten, A Diagrammatic Analysis of Some Contributions to the ΔI = 1/2 Rule, Phys. Rev. D 20 (1979) 1216 [INSPIRE].ADSGoogle Scholar
  79. [79]
    F.J. Gilman and M.B. Wise, Effective Hamiltonian for ΔS = 1 Weak Nonleptonic Decays in the Six Quark Model, Phys. Rev. D 20 (1979) 2392 [INSPIRE].ADSGoogle Scholar
  80. [80]
    G. Altarelli, G. Curci, G. Martinelli and S. Petrarca, QCD Nonleading Corrections to Weak Decays as an Application of Regularization by Dimensional Reduction, Nucl. Phys. B 187 (1981) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A.J. Buras and P.H. Weisz, QCD Nonleading Corrections to Weak Decays in Dimensional Regularization and ’t Hooft-Veltman Schemes, Nucl. Phys. B 333 (1990) 66 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    A.J. Buras, M. Jamin, M.E. Lautenbacher and P.H. Weisz, Effective Hamiltonians for ΔS = 1 and ΔB = 1 nonleptonic decays beyond the leading logarithmic approximation, Nucl. Phys. B 370 (1992) 69 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    A.J. Buras, M. Jamin, M.E. Lautenbacher and P.H. Weisz, Two loop anomalous dimension matrix for ΔS = 1 weak nonleptonic decays I: \( \mathcal{O}\left({\alpha}_s^2\right) \), Nucl. Phys. B 400 (1993) 37 [hep-ph/9211304] [INSPIRE].
  84. [84]
    M. Ciuchini, E. Franco, G. Martinelli and L. Reina, The ΔS = 1 effective Hamiltonian including next-to-leading order QCD and QED corrections, Nucl. Phys. B 415 (1994) 403 [hep-ph/9304257] [INSPIRE].
  85. [85]
    C. Dib, I. Dunietz and F.J. Gilman, CP Violation in the K Lπ 0 + Decay Amplitude for Large M t, Phys. Lett. B 218 (1989) 487 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    C. Dib, I. Dunietz and F.J. Gilman, K Lπ 0 + Decays for Large m t, Phys. Rev. D 39 (1989) 2639 [INSPIRE].ADSGoogle Scholar
  87. [87]
    F.J. Gilman and M.B. Wise, Kπe + e in the Six Quark Model, Phys. Rev. D 21 (1980) 3150 [INSPIRE].ADSGoogle Scholar
  88. [88]
    J. Flynn and L. Randall, The CP Violating Contribution to the Decay K Lπ 0 e + e , Nucl. Phys. B 326 (1989) 31 [Erratum ibid. B 334 (1990) 580] [INSPIRE].
  89. [89]
    A.J. Buras, M.E. Lautenbacher, M. Misiak and M. Münz, Direct CP-violation in K Lπ 0 e + e beyond leading logarithms, Nucl. Phys. B 423 (1994) 349 [hep-ph/9402347] [INSPIRE].
  90. [90]
    M.S. Chanowitz, M. Furman and I. Hinchliffe, The Axial Current in Dimensional Regularization, Nucl. Phys. B 159 (1979) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  92. [92]
    P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  93. [93]
    G. Ecker, J. Kambor and D. Wyler, Resonances in the weak chiral Lagrangian, Nucl. Phys. B 394 (1993) 101 [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    G. Ecker, A. Pich and E. de Rafael, Vector Meson Exchange in Radiative Kaon Decays and Chiral Perturbation Theory, Phys. Lett. B 237 (1990) 481 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    A. Pich and E. de Rafael, Four quark operators and nonleptonic weak transitions, Nucl. Phys. B 358 (1991) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    G. D’Ambrosio and J. Portolés, Spin 1 resonance contributions to the weak chiral Lagrangian: The vector field formulation, Nucl. Phys. B 533 (1998) 494 [hep-ph/9711211] [INSPIRE].
  97. [97]
    L. Cappiello, O. Catà and G. D’Ambrosio, A holographic approach to low-energy weak interactions of hadrons, Phys. Rev. D 85 (2012) 015003 [arXiv:1106.0467] [INSPIRE].ADSGoogle Scholar
  98. [98]
    G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett. B 223 (1989) 425 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    G. Ecker, J. Gasser, A. Pich and E. de Rafael, The Role of Resonances in Chiral Perturbation Theory, Nucl. Phys. B 321 (1989) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    L. Cappiello, O. Catà and G. D’Ambrosio, Closing in on the radiative weak chiral couplings, Eur. Phys. J. C 78 (2018) 265 [arXiv:1712.10270] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    B.R. Holstein, Current algebra, Glashow’s model of CP nonconservation and K → 3π, Phys. Rev. 177 (1969) 2417 [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    L.-F. Li and L. Wolfenstein, Current Algebra Analysis of CP Violations in K → 3π Decay in the Six Quark Weinberg-Salam Model, Phys. Rev. D 21 (1980) 178 [INSPIRE].ADSGoogle Scholar
  103. [103]
    J. Kambor, J.H. Missimer and D. Wyler, K → 2π and K → 3π decays in next-to-leading order chiral perturbation theory, Phys. Lett. B 261 (1991) 496 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    J. Bijnens, P. Dhonte and F. Borg, K → 3π decays in chiral perturbation theory, Nucl. Phys. B 648 (2003) 317 [hep-ph/0205341] [INSPIRE].
  105. [105]
    G. D’Ambrosio, G. Isidori, A. Pugliese and N. Paver, Strong rescattering in K → 3π decays and low-energy meson dynamics, Phys. Rev. D 50 (1994) 5767 [Erratum ibid. D 51 (1995) 3975] [hep-ph/9403235] [INSPIRE].
  106. [106]
    L. Maiani and N. Paver, CP conserving nonleptonic K → 3π decays, in L. Maiani et al. eds., The second DAPHNE physics handbook, vol. 1, (1995), 239–264.Google Scholar
  107. [107]
    https://hepdata.net/record/ins815724, for K ±π ± e + e .
  108. [108]
    https://hepdata.net/record/ins878312, for K ±π ± μ + μ .
  109. [109]
    J. Gasser and U.G. Meissner, Chiral expansion of pion form-factors beyond one loop, Nucl. Phys. B 357 (1991) 90 [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    S. Descotes-Genon and M. Knecht, Two-loop representations of low-energy pion form factors and ππ scattering phases in the presence of isospin breaking, Eur. Phys. J. C 72 (2012) 1962 [arXiv:1202.5886] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press (1966).Google Scholar
  112. [112]
    S. Descotes-Genon and B. Moussallam, Analyticity of ηπ isospin-violating form factors and the τηπν second-class decay, Eur. Phys. J. C 74 (2014) 2946 [arXiv:1404.0251] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    J.B. Bronzan and C. Kacser, Khuri-Treiman Representation and Perturbation Theory, Phys. Rev. 132 (1963) 2703 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  114. [114]
    C. Kacser, Analytic Structure of Partial-Wave Amplitudes for Production and Decay Processes, Phys. Rev. 132 (1963) 2712 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  115. [115]
    M. Zdráhal, Construction of pseudoscalar meson amplitudes in chiral perturbation theory using a dispersive approach, Ph.D. Thesis, Charles University, Prague (2011), https://is.cuni.cz/webapps/zzp/download/140012164.
  116. [116]
    K. Kampf, M. Knecht, J. Novotný and M. Zdráhal, in preparation.Google Scholar
  117. [117]
    J. Kennedy and T.D. Spearman, Singularities in spatial wave amplitudes for two ingoing and two outgoing particles, Phys. Rev. 126 (1961) 1596.ADSCrossRefzbMATHGoogle Scholar
  118. [118]
    F. Guerrero and A. Pich, Effective field theory description of the pion form-factor, Phys. Lett. B 412 (1997) 382 [hep-ph/9707347] [INSPIRE].
  119. [119]
    T.N. Truong, Chiral Perturbation Theory and Final State Theorem, Phys. Rev. Lett. 61 (1988) 2526 [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    A. Dobado, M.J. Herrero and T.N. Truong, Unitarized Chiral Perturbation Theory for Elastic Pion-Pion Scattering, Phys. Lett. B 235 (1990) 134 [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    L. Beldjoudi and T.N. Truong, ππ scattering and pion form-factors, hep-ph/9403348 [INSPIRE].
  122. [122]
    T. Hannah, Unitarity, chiral perturbation theory and meson form-factors, Phys. Rev. D 54 (1996) 4648 [hep-ph/9611307] [INSPIRE].
  123. [123]
    NA48/2 collaboration, Measurement of the Dalitz plot slopes of the K ±π ± π + π decay, Phys. Lett. B 649 (2007) 349 [hep-ex/0702045] [INSPIRE].
  124. [124]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  125. [125]
    E. Witten, Baryons in the 1/n Expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    M.A. Shifman, Quark hadron duality, in At the frontier of particle physics. Handbook of QCD. Vol. 1-3, World Scientific, (2001), pp. 1447–1494, hep-ph/0009131 [INSPIRE].
  127. [127]
    E. de Rafael, Large Nc QCD and Harmonic Sums, Pramana 78 (2012) 927.ADSCrossRefGoogle Scholar
  128. [128]
    D. Greynat, E. de Rafael and G. Vulvert, Asymptotic behaviour of pion-pion total cross-sections, JHEP 03 (2014) 107 [arXiv:1312.2881] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    J. Gasser and M.E. Sainio, Two loop integrals in chiral perturbation theory, Eur. Phys. J. C 6 (1999) 297 [hep-ph/9803251] [INSPIRE].
  130. [130]
    NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.19 of 2018-06-22, F.W.J. Olver et al. eds.
  131. [131]
    P. Flajolet, X. Gourdon and P. Dumas, Mellin Transforms and Asymptotics: Harmonic Sums, Theor. Comput. Sci. 144 (1995) 3.MathSciNetCrossRefzbMATHGoogle Scholar
  132. [132]
    S. Friot, D. Greynat and E. De Rafael, Asymptotics of Feynman diagrams and the Mellin-Barnes representation, Phys. Lett. B 628 (2005) 73 [hep-ph/0505038] [INSPIRE].
  133. [133]
    G.J. Gounaris and J.J. Sakurai, Finite width corrections to the vector meson dominance prediction for ρe + e , Phys. Rev. Lett. 21 (1968) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  134. [134]
    J.A. Oller, E. Oset and J.E. Palomar, Pion and kaon vector form-factors, Phys. Rev. D 63 (2001) 114009 [hep-ph/0011096] [INSPIRE].
  135. [135]
    A. Pich and J. Portolés, The vector form-factor of the pion from unitarity and analyticity: A model independent approach, Phys. Rev. D 63 (2001) 093005 [hep-ph/0101194] [INSPIRE].
  136. [136]
    H. Leutwyler, Electromagnetic form-factor of the pion, in Continuous advances in QCD. Proceedings, Conference, Minneapolis, U.S.A., May 17–23, 2002, pp. 23–40, hep-ph/0212324 [INSPIRE].
  137. [137]
    C. Bruch, A. Khodjamirian and J.H. Kühn, Modeling the pion and kaon form factors in the timelike region, Eur. Phys. J. C 39 (2005) 41 [hep-ph/0409080] [INSPIRE].
  138. [138]
    H. Czyż, A. Grzelinska and J.H. Kühn, Narrow resonances studies with the radiative return method, Phys. Rev. D 81 (2010) 094014 [arXiv:1002.0279] [INSPIRE].ADSGoogle Scholar
  139. [139]
    E.L. Lomon and S. Pacetti, Analytic pion form factor, Phys. Rev. D 94 (2016) 056002 [arXiv:1603.09527] [INSPIRE].ADSGoogle Scholar
  140. [140]
    N.N. Khuri and S.B. Treiman, Pion-Pion Scattering and K ± → 3π Decay, Phys. Rev. 119 (1960) 1115 [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    J. Kambor, C. Wiesendanger and D. Wyler, Final state interactions and Khuri-Treiman equations in η → 3π decays, Nucl. Phys. B 465 (1996) 215 [hep-ph/9509374] [INSPIRE].
  142. [142]
    A.V. Anisovich and H. Leutwyler, Dispersive analysis of the decay η → 3π, Phys. Lett. B 375 (1996) 335 [hep-ph/9601237] [INSPIRE].
  143. [143]
    M. Albaladejo and B. Moussallam, Extended chiral Khuri-Treiman formalism for η → 3π and the role of the a 0(980), f 0(980) resonances, Eur. Phys. J. C 77 (2017) 508 [arXiv:1702.04931] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from K l3 decays, Phys. Rev. D 76 (2007) 034017 [arXiv:0705.2025] [INSPIRE].ADSGoogle Scholar
  145. [145]
    S. Descotes-Genon, N.H. Fuchs, L. Girlanda and J. Stern, Analysis and interpretation of new low-energy ππ scattering data, Eur. Phys. J. C 24 (2002) 469 [hep-ph/0112088] [INSPIRE].
  146. [146]
    J. Stern, H. Sazdjian and N.H. Fuchs, What π-π scattering tells us about chiral perturbation theory, Phys. Rev. D 47 (1993) 3814 [hep-ph/9301244] [INSPIRE].
  147. [147]
    M. Knecht, B. Moussallam, J. Stern and N.H. Fuchs, The low-energy ππ amplitude to one and two loops, Nucl. Phys. B 457 (1995) 513 [hep-ph/9507319] [INSPIRE].
  148. [148]
    M. Zdráhal and J. Novotný, Dispersive Approach to Chiral Perturbation Theory, Phys. Rev. D 78 (2008) 116016 [arXiv:0806.4529] [INSPIRE].ADSGoogle Scholar
  149. [149]
    K. Kampf, M. Knecht, J. Novotný and M. Zdráhal, Analytical dispersive construction of η → 3π amplitude: first order in isospin breaking, Phys. Rev. D 84 (2011) 114015 [arXiv:1103.0982] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.INFN — Sezione di NapoliNapoliItaly
  2. 2.GrenobleFrance
  3. 3.Centre de Physique Théorique, CNRS/Aix-Marseille Univ./Univ. du Sud Toulon-Var (UMR 7332)Marseille Cedex 9France

Personalised recommendations