Journal of High Energy Physics

, 2019:43 | Cite as

Open minimal strings and open Gelfand-Dickey hierarchies

  • Konstantin AleshkinEmail author
  • Vladimir Belavin
Open Access
Regular Article - Theoretical Physics


We study the connection between minimal Liouville string theory and generalized open KdV hierarchies. We are interested in generalizing Douglas string equation formalism to the open topology case. We show that combining the results of the closed topology, based on the Frobenius manifold structure and resonance transformations, with the appropriate open case modification, which requires the insertion of macroscopic loop operators, we reproduce the well-known result for the expectation value of a bulk operator for the FZZT brane coupled to the general (q, p) minimal model. The matching of the results of the two setups gives new evidence of the connection between minimal Liouville gravity and the theory of Topological Gravity.


Conformal Field Models in String Theory Integrable Hierarchies Matrix Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M.R. Douglas, Strings in less than one-dimension and the generalized K D V hierarchies, Phys. Lett. B 238 (1990) 176 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Belavin, B. Dubrovin and B. Mukhametzhanov, Minimal Liouville gravity correlation numbers from Douglas string equation, JHEP 01 (2014) 156 [arXiv:1310.5659] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B. Dubrovin, Integrable systems in topological field theory, Nucl. Phys. B 379 (1992) 627 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    V. Belavin, Unitary minimal Liouville gravity and Frobenius manifolds, JHEP 07 (2014) 129 [arXiv:1405.4468] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A.A. Belavin and V.A. Belavin, Frobenius manifolds, integrable hierarchies and minimal Liouville gravity, JHEP 09 (2014) 151 [arXiv:1406.6661] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    V. Belavin, Correlation functions in unitary minimal Liouville gravity and Frobenius manifolds, JHEP 02 (2015) 052 [arXiv:1412.4245] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    V. Belavin and Yu. Rud, Matrix model approach to minimal Liouville gravity revisited, J. Phys. A 48 (2015) 18FT01 [arXiv:1502.05575] [INSPIRE].
  9. [9]
    G. Tarnopolsky, Five-point correlation numbers in one-matrix model, J. Phys. A 44 (2011) 325401 [arXiv:0912.4971] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  10. [10]
    A. Belavin, M. Bershtein and G. Tarnopolsky, A remark on the three approaches to 2D quantum gravity, JETP Lett. 93 (2011) 47 [arXiv:1010.2222] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V. Belavin, Torus amplitudes in minimal Liouville gravity and matrix models, Phys. Lett. B 698 (2011) 86 [arXiv:1010.5508] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    L. Spodyneiko, Minimal Liouville gravity on the torus via the Douglas string equation, J. Phys. A 48 (2015) 065401.ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    G.W. Moore, N. Seiberg and M. Staudacher, From loops to states in 2D quantum gravity, Nucl. Phys. B 362 (1991) 665 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.A. Belavin and A.B. Zamolodchikov, On correlation numbers in 2D minimal gravity and matrix models, J. Phys. A 42 (2009) 304004 [arXiv:0811.0450] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  15. [15]
    I.K. Kostov, B. Ponsot and D. Serban, Boundary Liouville theory and 2D quantum gravity, Nucl. Phys. B 683 (2004) 309 [hep-th/0307189] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J.L. Jacobsen and H. Saleur, Conformal boundary loop models, Nucl. Phys. B 788 (2008) 137 [math-ph/0611078] [INSPIRE].
  17. [17]
    J.-E. Bourgine and K. Hosomichi, Boundary operators in the O(n) and RSOS matrix models, JHEP 01 (2009) 009 [arXiv:0811.3252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J.-E. Bourgine, K. Hosomichi and I. Kostov, Boundary transitions of the O(n) model on a dynamical lattice, Nucl. Phys. B 832 (2010) 462 [arXiv:0910.1581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    I.K. Kostov, Boundary correlators in 2D quantum gravity: Liouville versus discrete approach, Nucl. Phys. B 658 (2003) 397 [hep-th/0212194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Ishiki and C. Rim, Boundary correlation numbers in one matrix model, Phys. Lett. B 694 (2011) 272 [arXiv:1006.3906] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    E.J. Martinec, G.W. Moore and N. Seiberg, Boundary operators in 2D gravity, Phys. Lett. B 263 (1991) 190 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Hosomichi, Minimal open strings, JHEP 06 (2008) 029 [arXiv:0804.4721] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    K. Aleshkin, V. Belavin and C. Rim, Minimal gravity and Frobenius manifolds: bulk correlation on sphere and disk, JHEP 11 (2017) 169 [arXiv:1708.06380] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Bawane, H. Muraki and C. Rim, Dual Frobenius manifolds of minimal gravity on disk, JHEP 03 (2018) 134 [arXiv:1801.10328] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Bawane, H. Muraki and C. Rim, Open KdV hierarchy and minimal gravity on disk, Phys. Lett. B 783 (2018) 183 [arXiv:1804.09570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    H. Muraki and C. Rim, Open KdV hierarchy of 2d minimal gravity of Lee-Yang series, arXiv:1808.07304 [INSPIRE].
  27. [27]
    K. Aleshkin and V. Belavin, On the construction of the correlation numbers in minimal Liouville gravity, JHEP 11 (2016) 142 [arXiv:1610.01558] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.L. Cardy, Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 275 (1986) 200 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    I. Runkel, Boundary structure constants for the A series Virasoro minimal models, Nucl. Phys. B 549 (1999) 563 [hep-th/9811178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory. 1. Boundary state and boundary two point function, hep-th/0001012 [INSPIRE].
  33. [33]
    B. Ponsot and J. Teschner, Boundary Liouville field theory: boundary three point function, Nucl. Phys. B 622 (2002) 309 [hep-th/0110244] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Belavin and C. Rim, Bulk one-point function on disk in one-matrix model, Phys. Lett. B 687 (2010) 264 [arXiv:1001.4356] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, Loop equations and Virasoro constraints in nonperturbative 2D quantum gravity, Nucl. Phys. B 348 (1991) 435 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Buryak, Open intersection numbers and the wave function of the KdV hierarchy, Moscow Math. J. 16 (2016) 27 [arXiv:1409.7957] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    J. Teschner, Remarks on Liouville theory with boundary, PoS(tmr2000)041 [hep-th/0009138] [INSPIRE].
  38. [38]
    N. Seiberg and D. Shih, Branes, rings and matrix models in minimal (super)string theory, JHEP 02 (2004) 021 [hep-th/0312170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    V.G. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Fractal structure of 2D quantum gravity, Mod. Phys. Lett. A 3 (1988) 819 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A.A. Belavin and A.B. Zamolodchikov, Integrals over moduli spaces, ground ring and four-point function in minimal Liouville gravity, Theor. Math. Phys. 147 (2006) 729 [INSPIRE].CrossRefzbMATHGoogle Scholar
  43. [43]
    A. Belavin and V. Belavin, Higher equations of motion in boundary Liouville field theory, JHEP 02 (2010) 010 [arXiv:0911.4597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE].
  45. [45]
    R. Dijkgraaf and E. Witten, Developments in topological gravity, Int. J. Mod. Phys. A 33 (2018) 1830029 [arXiv:1804.03275] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    V.A. Kazakov, The appearance of matter fields from quantum fluctuations of 2D gravity, Mod. Phys. Lett. A 4 (1989) 2125 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E. Brézin and V.A. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990) 144 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    Yu. Makeenko, A. Marshakov, A. Mironov and A. Morozov, Continuum versus discrete Virasoro in one matrix models, Nucl. Phys. B 356 (1991) 574 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    S. Kharchev et al., Conformal matrix models as an alternative to conventional multimatrix models, Nucl. Phys. B 404 (1993) 717 [hep-th/9208044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    C.V. Johnson, On integrable c < 1 open string theory, Nucl. Phys. B 414 (1994) 239 [hep-th/9301112] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    J. Goeree, W constraints in 2D quantum gravity, Nucl. Phys. B 358 (1991) 737 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    A. Buryak, E. Clader and R.J. Tessler, Open r-spin theory and the Gelfand-Dickey wave function, arXiv:1809.02536 [INSPIRE].
  53. [53]
    P.H. Ginsparg, M. Goulian, M.R. Plesser and J. Zinn-Justin, (p, q) string actions, Nucl. Phys. B 342 (1990) 539 [INSPIRE].
  54. [54]
    B. Dubrovin and Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, math/0108160.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.L.D. Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.International School of Advanced Studies (SISSA)TriesteItaly
  3. 3.I.E. Tamm Department of Theoretical PhysicsP.N. Lebedev Physical InstituteMoscowRussia
  4. 4.Department of Quantum PhysicsInstitute for Information Transmission ProblemsMoscowRussia
  5. 5.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations