Open minimal strings and open Gelfand-Dickey hierarchies
- 10 Downloads
Abstract
We study the connection between minimal Liouville string theory and generalized open KdV hierarchies. We are interested in generalizing Douglas string equation formalism to the open topology case. We show that combining the results of the closed topology, based on the Frobenius manifold structure and resonance transformations, with the appropriate open case modification, which requires the insertion of macroscopic loop operators, we reproduce the well-known result for the expectation value of a bulk operator for the FZZT brane coupled to the general (q, p) minimal model. The matching of the results of the two setups gives new evidence of the connection between minimal Liouville gravity and the theory of Topological Gravity.
Keywords
Conformal Field Models in String Theory Integrable Hierarchies Matrix ModelsNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
- [1]A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [2]M.R. Douglas, Strings in less than one-dimension and the generalized K − D − V hierarchies, Phys. Lett. B 238 (1990) 176 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [3]A. Belavin, B. Dubrovin and B. Mukhametzhanov, Minimal Liouville gravity correlation numbers from Douglas string equation, JHEP 01 (2014) 156 [arXiv:1310.5659] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [4]B. Dubrovin, Integrable systems in topological field theory, Nucl. Phys. B 379 (1992) 627 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [5]V. Belavin, Unitary minimal Liouville gravity and Frobenius manifolds, JHEP 07 (2014) 129 [arXiv:1405.4468] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [6]A.A. Belavin and V.A. Belavin, Frobenius manifolds, integrable hierarchies and minimal Liouville gravity, JHEP 09 (2014) 151 [arXiv:1406.6661] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [7]V. Belavin, Correlation functions in unitary minimal Liouville gravity and Frobenius manifolds, JHEP 02 (2015) 052 [arXiv:1412.4245] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [8]V. Belavin and Yu. Rud, Matrix model approach to minimal Liouville gravity revisited, J. Phys. A 48 (2015) 18FT01 [arXiv:1502.05575] [INSPIRE].
- [9]G. Tarnopolsky, Five-point correlation numbers in one-matrix model, J. Phys. A 44 (2011) 325401 [arXiv:0912.4971] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [10]A. Belavin, M. Bershtein and G. Tarnopolsky, A remark on the three approaches to 2D quantum gravity, JETP Lett. 93 (2011) 47 [arXiv:1010.2222] [INSPIRE].ADSCrossRefGoogle Scholar
- [11]V. Belavin, Torus amplitudes in minimal Liouville gravity and matrix models, Phys. Lett. B 698 (2011) 86 [arXiv:1010.5508] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [12]L. Spodyneiko, Minimal Liouville gravity on the torus via the Douglas string equation, J. Phys. A 48 (2015) 065401.ADSMathSciNetzbMATHGoogle Scholar
- [13]G.W. Moore, N. Seiberg and M. Staudacher, From loops to states in 2D quantum gravity, Nucl. Phys. B 362 (1991) 665 [INSPIRE].ADSCrossRefGoogle Scholar
- [14]A.A. Belavin and A.B. Zamolodchikov, On correlation numbers in 2D minimal gravity and matrix models, J. Phys. A 42 (2009) 304004 [arXiv:0811.0450] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [15]I.K. Kostov, B. Ponsot and D. Serban, Boundary Liouville theory and 2D quantum gravity, Nucl. Phys. B 683 (2004) 309 [hep-th/0307189] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [16]J.L. Jacobsen and H. Saleur, Conformal boundary loop models, Nucl. Phys. B 788 (2008) 137 [math-ph/0611078] [INSPIRE].
- [17]J.-E. Bourgine and K. Hosomichi, Boundary operators in the O(n) and RSOS matrix models, JHEP 01 (2009) 009 [arXiv:0811.3252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [18]J.-E. Bourgine, K. Hosomichi and I. Kostov, Boundary transitions of the O(n) model on a dynamical lattice, Nucl. Phys. B 832 (2010) 462 [arXiv:0910.1581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [19]I.K. Kostov, Boundary correlators in 2D quantum gravity: Liouville versus discrete approach, Nucl. Phys. B 658 (2003) 397 [hep-th/0212194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [20]G. Ishiki and C. Rim, Boundary correlation numbers in one matrix model, Phys. Lett. B 694 (2011) 272 [arXiv:1006.3906] [INSPIRE].ADSMathSciNetGoogle Scholar
- [21]E.J. Martinec, G.W. Moore and N. Seiberg, Boundary operators in 2D gravity, Phys. Lett. B 263 (1991) 190 [INSPIRE].ADSCrossRefGoogle Scholar
- [22]K. Hosomichi, Minimal open strings, JHEP 06 (2008) 029 [arXiv:0804.4721] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [23]K. Aleshkin, V. Belavin and C. Rim, Minimal gravity and Frobenius manifolds: bulk correlation on sphere and disk, JHEP 11 (2017) 169 [arXiv:1708.06380] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [24]A. Bawane, H. Muraki and C. Rim, Dual Frobenius manifolds of minimal gravity on disk, JHEP 03 (2018) 134 [arXiv:1801.10328] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [25]A. Bawane, H. Muraki and C. Rim, Open KdV hierarchy and minimal gravity on disk, Phys. Lett. B 783 (2018) 183 [arXiv:1804.09570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [26]H. Muraki and C. Rim, Open KdV hierarchy of 2d minimal gravity of Lee-Yang series, arXiv:1808.07304 [INSPIRE].
- [27]K. Aleshkin and V. Belavin, On the construction of the correlation numbers in minimal Liouville gravity, JHEP 11 (2016) 142 [arXiv:1610.01558] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [28]J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984) 514 [INSPIRE].ADSCrossRefGoogle Scholar
- [29]J.L. Cardy, Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 275 (1986) 200 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [30]J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys. Lett. B 259 (1991) 274 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [31]I. Runkel, Boundary structure constants for the A series Virasoro minimal models, Nucl. Phys. B 549 (1999) 563 [hep-th/9811178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [32]V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory. 1. Boundary state and boundary two point function, hep-th/0001012 [INSPIRE].
- [33]B. Ponsot and J. Teschner, Boundary Liouville field theory: boundary three point function, Nucl. Phys. B 622 (2002) 309 [hep-th/0110244] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [34]A. Belavin and C. Rim, Bulk one-point function on disk in one-matrix model, Phys. Lett. B 687 (2010) 264 [arXiv:1001.4356] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [35]R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, Loop equations and Virasoro constraints in nonperturbative 2D quantum gravity, Nucl. Phys. B 348 (1991) 435 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [36]A. Buryak, Open intersection numbers and the wave function of the KdV hierarchy, Moscow Math. J. 16 (2016) 27 [arXiv:1409.7957] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [37]
- [38]N. Seiberg and D. Shih, Branes, rings and matrix models in minimal (super)string theory, JHEP 02 (2004) 021 [hep-th/0312170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [39]V.G. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Fractal structure of 2D quantum gravity, Mod. Phys. Lett. A 3 (1988) 819 [INSPIRE].ADSCrossRefGoogle Scholar
- [40]A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [41]A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [42]A.A. Belavin and A.B. Zamolodchikov, Integrals over moduli spaces, ground ring and four-point function in minimal Liouville gravity, Theor. Math. Phys. 147 (2006) 729 [INSPIRE].CrossRefzbMATHGoogle Scholar
- [43]A. Belavin and V. Belavin, Higher equations of motion in boundary Liouville field theory, JHEP 02 (2010) 010 [arXiv:0911.4597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [44]A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE].
- [45]R. Dijkgraaf and E. Witten, Developments in topological gravity, Int. J. Mod. Phys. A 33 (2018) 1830029 [arXiv:1804.03275] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [46]V.A. Kazakov, The appearance of matter fields from quantum fluctuations of 2D gravity, Mod. Phys. Lett. A 4 (1989) 2125 [INSPIRE].ADSCrossRefGoogle Scholar
- [47]E. Brézin and V.A. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990) 144 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [48]Yu. Makeenko, A. Marshakov, A. Mironov and A. Morozov, Continuum versus discrete Virasoro in one matrix models, Nucl. Phys. B 356 (1991) 574 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [49]S. Kharchev et al., Conformal matrix models as an alternative to conventional multimatrix models, Nucl. Phys. B 404 (1993) 717 [hep-th/9208044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [50]C.V. Johnson, On integrable c < 1 open string theory, Nucl. Phys. B 414 (1994) 239 [hep-th/9301112] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [51]J. Goeree, W constraints in 2D quantum gravity, Nucl. Phys. B 358 (1991) 737 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [52]A. Buryak, E. Clader and R.J. Tessler, Open r-spin theory and the Gelfand-Dickey wave function, arXiv:1809.02536 [INSPIRE].
- [53]P.H. Ginsparg, M. Goulian, M.R. Plesser and J. Zinn-Justin, (p, q) string actions, Nucl. Phys. B 342 (1990) 539 [INSPIRE].
- [54]B. Dubrovin and Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, math/0108160.