Advertisement

Journal of High Energy Physics

, 2019:36 | Cite as

Nongeometric heterotic strings and dual F-theory with enhanced gauge groups

  • Yusuke KimuraEmail author
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

Eight-dimensional nongeometric heterotic strings were constructed as duals of F-theory on Λ1,1E8E7 lattice polarized K3 surfaces by Malmendier and Morrison. We study the structure of the moduli space of this construction. There are special points in this space at which the ranks of the non-Abelian gauge groups on the 7-branes in F-theory are enhanced to 18. We demonstrate that the enhanced rank-18 non-Abelian gauge groups arise as a consequence of the coincident 7-branes, which deform stable degenerations on the F-theory side. This observation suggests that the non-geometric heterotic strings include nonperturbative effects of the coincident 7-branes on the F-theory side. The gauge groups that arise at these special points in the moduli space do not allow for perturbative descriptions on the heterotic side.

We also construct a family of elliptically fibered Calabi-Yau 3-folds by fibering K3 surfaces with enhanced singularities over ℙ1. Highly enhanced gauge groups arise in F-theory compactifications on the resulting Calabi-Yau 3-folds.

Keywords

Differential and Algebraic Geometry F-Theory Gauge Symmetry Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].
  2. [2]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].
  3. [3]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  4. [4]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].
  5. [5]
    R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [INSPIRE].
  6. [6]
    R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    R. Blumenhagen, G. Honecker and T. Weigand, Supersymmetric (non-)Abelian bundles in the Type I and SO(32) heterotic string, JHEP 08 (2005) 009 [hep-th/0507041] [INSPIRE].
  8. [8]
    L.B. Anderson, A. Constantin, J. Gray, A. Lukas and E. Palti, A comprehensive scan for heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].
  9. [9]
    L.B. Anderson, J. Gray and E. Sharpe, Algebroids, heterotic moduli spaces and the Strominger system, JHEP 07 (2014) 037 [arXiv:1402.1532] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    X. de la Ossa and E.E. Svanes, Holomorphic bundles and the moduli space of N = 1 supersymmetric heterotic compactifications, JHEP 10 (2014) 123 [arXiv:1402.1725] [INSPIRE].
  11. [11]
    L.B. Anderson and W. Taylor, Geometric constraints in dual F-theory and heterotic string compactifications, JHEP 08 (2014) 025 [arXiv:1405.2074] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    X. de la Ossa, E. Hardy and E.E. Svanes, The heterotic superpotential and moduli, JHEP 01 (2016) 049 [arXiv:1509.08724] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P. Candelas, X. de la Ossa and J. McOrist, A metric for heterotic moduli, Commun. Math. Phys. 356 (2017) 567 [arXiv:1605.05256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Ashmore et al., Finite deformations from a heterotic superpotential: holomorphic Chern-Simons and an L algebra, JHEP 10 (2018) 179 [arXiv:1806.08367] [INSPIRE].
  15. [15]
    P. Candelas, X. De La Ossa, J. McOrist and R. Sisca, The universal geometry of heterotic vacua, arXiv:1810.00879 [INSPIRE].
  16. [16]
    P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].
  17. [17]
    L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A.P. Braun, Y. Kimura and T. Watari, The Noether-Lefschetz problem and gauge-group-resolved landscapes: F-theory on K3 × K3 as a test case, JHEP 04 (2014) 050 [arXiv:1401.5908] [INSPIRE].
  19. [19]
    N. Cabo Bizet, A. Klemm and D. Vieira Lopes, Landscaping with fluxes and the E 8 Yukawa point in F-theory, arXiv:1404.7645 [INSPIRE].
  20. [20]
    M. Cvetič et al., Origin of abelian gauge symmetries in heterotic/F-theory duality, JHEP 04 (2016) 041 [arXiv:1511.08208] [INSPIRE].ADSzbMATHGoogle Scholar
  21. [21]
    S. Mizoguchi and T. Tani, Looijenga’s weighted projective space, Tate’s algorithm and Mordell-Weil Lattice in F-theory and heterotic string theory, JHEP 11 (2016) 053 [arXiv:1607.07280] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Malmendier and D.R. Morrison, K3 surfaces, modular forms and non-geometric heterotic compactifications, Lett. Math. Phys. 105 (2015) 1085 [arXiv:1406.4873] [INSPIRE].
  23. [23]
    K.S. Narain, New heterotic string theories in uncompactified dimensions < 10, Phys. Lett. B 169 (1986) 41.Google Scholar
  24. [24]
    S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Kumar, K3 surfaces associated with curves of genus two, Int. Math. Res. Not. (2008) rnm165 [math/0701669].
  26. [26]
    A. Clingher and C.F. Doran, Note on a geometric isogeny of K3 surfaces, Int. Math. Res. Not. 2011 (2011) 3657 [arXiv:1004.3335].
  27. [27]
    A. Clingher and C.F. Doran, Lattice polarized K3 surfaces and Siegel modular forms, Adv. Math. 231 (2012) 172.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    G. Curio, N = 2 string-string duality and holomorphic couplings, Fortsch. Phys. 46 (1998) 75 [hep-th/9708009] [INSPIRE].
  29. [29]
    L. Martucci, J.F. Morales and D. Ricci Pacifici, Branes, U-folds and hyperelliptic fibrations, JHEP 01 (2013) 145 [arXiv:1207.6120] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A.P. Braun, F. Fucito and J.F. Morales, U-folds as K3 fibrations, JHEP 10 (2013) 154 [arXiv:1308.0553] [INSPIRE].
  31. [31]
    J. McOrist, D.R. Morrison and S. Sethi, Geometries, non-geometries and fluxes, Adv. Theor. Math. Phys. 14 (2010) 1515 [arXiv:1004.5447] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Clingher, A. Malmendier and T. Shaska, Six line configurations and string dualities, arXiv:1806.07460 [INSPIRE].
  33. [33]
    J. Gu and H. Jockers, Nongeometric F-theory-heterotic duality, Phys. Rev. D 91 (2015) 086007 [arXiv:1412.5739] [INSPIRE].
  34. [34]
    D. Lüst, S. Massai and V. Vall Camell, The monodromy of T-folds and T-fects, JHEP 09 (2016) 127 [arXiv:1508.01193] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Font et al., Heterotic T-fects, 6D SCFTs and F-theory, JHEP 08 (2016) 175 [arXiv:1603.09361] [INSPIRE].
  36. [36]
    A. Malmendier and T. Shaska, The Satake sextic in F-theory, J. Geom. Phys. 120 (2017) 290 [arXiv:1609.04341] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    I. García-Etxebarria, D. Lüst, S. Massai and C. Mayrhofer, Ubiquity of non-geometry in heterotic compactifications, JHEP 03 (2017) 046 [arXiv:1611.10291] [INSPIRE].
  38. [38]
    A. Font and C. Mayrhofer, Non-geometric vacua of the Spin(32)/2 heterotic string and little string theories, JHEP 11 (2017) 064 [arXiv:1708.05428] [INSPIRE].
  39. [39]
    A. Font et al., Non-geometric heterotic backgrounds and 6D SCFTs/LSTs, PoS(CORFU2016)123 [arXiv:1712.07083] [INSPIRE].
  40. [40]
    I.I. Piatetski-Shapiro and I.R. Shafarevich, A Torelli theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 530.Google Scholar
  41. [41]
    T. Shioda and H. Inose, On singular K3 surfaces, in Complex analysis and algebraic geometry, W.L.Jr. Baily and T. Shioda eds., Iwanami Shoten, Tokyo Japan (1977).Google Scholar
  42. [42]
    J.W.S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts volume 24, Cambridge University Press, Cambridge U.K. (1991).Google Scholar
  43. [43]
    V. Braun and D.R. Morrison, F-theory on genus-one fibrations, JHEP 08 (2014) 132 [arXiv:1401.7844] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].
  45. [45]
    L.B. Anderson, I. García-Etxebarria, T.W. Grimm and J. Keitel, Physics of F-theory compactifications without section, JHEP 12 (2014) 156 [arXiv:1406.5180] [INSPIRE].
  46. [46]
    D. Klevers et al., F-theory on all toric hypersurface fibrations and its Higgs branches, JHEP 01 (2015) 142 [arXiv:1408.4808] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    I. García-Etxebarria, T.W. Grimm and J. Keitel, Yukawas and discrete symmetries in F-theory compactifications without section, JHEP 11 (2014) 125 [arXiv:1408.6448] [INSPIRE].
  48. [48]
    C. Mayrhofer, E. Palti, O. Till and T. Weigand, Discrete gauge symmetries by Higgsing in four-dimensional f-theory compactifications, JHEP 12 (2014) 068 [arXiv:1408.6831] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Mayrhofer, E. Palti, O. Till and T. Weigand, On discrete symmetries and torsion homology in F-theory, JHEP 06 (2015) 029 [arXiv:1410.7814] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    V. Braun, T.W. Grimm and J. Keitel, Complete intersection fibers in F-theory, JHEP 03 (2015) 125 [arXiv:1411.2615] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    M. Cvetič et al., F-theory vacua with3 gauge symmetry, Nucl. Phys. B 898 (2015) 736 [arXiv:1502.06953] [INSPIRE].
  52. [52]
    L. Lin, C. Mayrhofer, O. Till and T. Weigand, Fluxes in F-theory compactifications on genus-one fibrations, JHEP 01 (2016) 098 [arXiv:1508.00162] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    Y. Kimura, Gauge groups and matter fields on some models of F-theory without section, JHEP 03 (2016) 042 [arXiv:1511.06912] [INSPIRE].
  54. [54]
    Y. Kimura, Gauge symmetries and matter fields in F -theory models without section — Compactifications on double cover and Fermat quartic K3 constructions times K3, Adv. Theor. Math. Phys. 21 (2017) 2087 [arXiv:1603.03212] [INSPIRE].
  55. [55]
    P.-K. Oehlmann, J. Reuter and T. Schimannek, Mordell-Weil torsion in the mirror of multi-sections, JHEP 12 (2016) 031 [arXiv:1604.00011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    Y. Kimura, Gauge groups and matter spectra in F-theory compactifications on genus-one fibered Calabi-Yau 4-folds without section — Hypersurface and double cover constructions, arXiv:1607.02978 [INSPIRE].
  57. [57]
    M. Cvetič, A. Grassi and M. Poretschkin, Discrete symmetries in heterotic/F-theory duality and mirror symmetry, JHEP 06 (2017) 156 [arXiv:1607.03176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    Y. Kimura, Discrete gauge groups in F-theory models on genus-one fibered Calabi-Yau 4-folds without section, JHEP 04 (2017) 168 [arXiv:1608.07219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    Y. Kimura, K3 surfaces without section as double covers of Halphen surfaces and F-theory compactifications, PTEP 2018 (2018) 043B06 [arXiv:1801.06525] [INSPIRE].
  60. [60]
    L.B. Anderson, A. Grassi, J. Gray and P.-K. Oehlmann, F-theory on quotient threefolds with (2, 0) discrete superconformal matter, JHEP 06 (2018) 098 [arXiv:1801.08658] [INSPIRE].
  61. [61]
    Y. Kimura, SU(N ) × ℤ2 in F-theory on K3 surfaces without section as double covers of Halphen surfaces, arXiv:1806.01727 [INSPIRE].
  62. [62]
    T. Weigand, TASI lectures on F-theory, arXiv:1806.01854 [INSPIRE].
  63. [63]
    M. Cvetič, L. Lin, M. Liu and P.-K. Oehlmann, An F-theory realization of the chiral MSSM with2 -parity, JHEP 09 (2018) 089 [arXiv:1807.01320] [INSPIRE].
  64. [64]
    M. Cvetič and L. Lin, TASI lectures on abelian and discrete symmetries in F-theory, PoS(TASI2017)020 [arXiv:1809.00012] [INSPIRE].
  65. [65]
    Y.-C. Huang and W. Taylor, On the prevalence of elliptic and genus one fibrations among toric hypersurface Calabi-Yau threefolds, arXiv:1809.05160 [INSPIRE].
  66. [66]
    Y. Kimura, Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces, JHEP 03 (2018) 045 [arXiv:1710.04984] [INSPIRE].
  67. [67]
    A. Grassi and D.R. Morrison, Group representations and the Euler characteristic of elliptically fibered Calabi-Yau threefolds, Jour. Alg. Geom. 12 (2003) 321 [math/0005196].
  68. [68]
    V. Kumar and W. Taylor, String universality in six dimensions, Adv. Theor. Math. Phys. 15 (2011) 325 [arXiv:0906.0987] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    V. Kumar, D.R. Morrison and W. Taylor, Mapping 6D N = 1 supergravities to F-theory, JHEP 02 (2010) 099 [arXiv:0911.3393] [INSPIRE].
  70. [70]
    V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N = 1 supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] [INSPIRE].
  71. [71]
    D.R. Morrison and W. Taylor, Matter and singularities, JHEP 01 (2012) 022 [arXiv:1106.3563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    A. Grassi and D.R. Morrison, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys. 6 (2012) 51 [arXiv:1109.0042] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    F. Bonetti and T.W. Grimm, Six-dimensional (1, 0) effective action of F-theory via M-theory on Calabi-Yau threefolds, JHEP 05 (2012) 019 [arXiv:1112.1082] [INSPIRE].
  74. [74]
    D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 (2012) 1072 [arXiv:1201.1943] [INSPIRE].
  75. [75]
    D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys. 60 (2012) 1187 [arXiv:1204.0283] [INSPIRE].
  76. [76]
    W. Taylor, On the Hodge structure of elliptically fibered Calabi-Yau threefolds, JHEP 08 (2012) 032 [arXiv:1205.0952] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    S.B. Johnson and W. Taylor, Enhanced gauge symmetry in 6D F-theory models and tuned elliptic Calabi-Yau threefolds, Fortsch. Phys. 64 (2016) 581 [arXiv:1605.08052] [INSPIRE].
  78. [78]
    D.R. Morrison, D.S. Park and W. Taylor, Non-Higgsable abelian gauge symmetry and F -theory on fiber products of rational elliptic surfaces, Adv. Theor. Math. Phys. 22 (2018) 177 [arXiv:1610.06929] [INSPIRE].
  79. [79]
    S. Monnier, G.W. Moore and D.S. Park, Quantization of anomaly coefficients in 6D \( \mathcal{N}=\left(1,0\right) \) supergravity, JHEP 02 (2018) 020 [arXiv:1711.04777] [INSPIRE].
  80. [80]
    Y.-C. Huang and W. Taylor, Comparing elliptic and toric hypersurface Calabi-Yau threefolds at large Hodge numbers, arXiv:1805.05907 [INSPIRE].
  81. [81]
    S.-J. Lee, W. Lerche and T. Weigand, A stringy test of the scalar weak gravity conjecture, Nucl. Phys. B 938 (2019) 321 [arXiv:1810.05169] [INSPIRE].
  82. [82]
    P. Arras, A. Grassi and T. Weigand, Terminal singularities, Milnor numbers and matter in F-theory, J. Geom. Phys. 123 (2018) 71 [arXiv:1612.05646] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    A. Grassi and T. Weigand, On topological invariants of algebraic threefolds with (-factorial) singularities, arXiv:1804.02424 [INSPIRE].
  84. [84]
    R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. [86]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. [87]
    R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    D.R. Morrison and D.S. Park, F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    C. Mayrhofer, E. Palti and T. Weigand, U(1) symmetries in F-theory GUTs with multiple sections, JHEP 03 (2013) 098 [arXiv:1211.6742] [INSPIRE].
  90. [90]
    V. Braun, T.W. Grimm and J. Keitel, New global F-theory GUTs with U(1) symmetries, JHEP 09 (2013) 154 [arXiv:1302.1854] [INSPIRE].
  91. [91]
    J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, Elliptic fibrations for SU(5) × U(1) × U(1) F-theory vacua, Phys. Rev. D 88 (2013) 046005 [arXiv:1303.5054] [INSPIRE].
  92. [92]
    M. Cvetič, D. Klevers and H. Piragua, F-theory compactifications with multiple U(1)-factors: constructing elliptic fibrations with rational sections, JHEP 06 (2013) 067 [arXiv:1303.6970] [INSPIRE].
  93. [93]
    V. Braun, T.W. Grimm and J. Keitel, Geometric engineering in toric F-theory and GUTs with U(1) gauge factors, JHEP 12 (2013) 069 [arXiv:1306.0577] [INSPIRE].
  94. [94]
    M. Cvetič, A. Grassi, D. Klevers and H. Piragua, Chiral four-dimensional F-theory compactifications with SU(5) and multiple U(1)-factors, JHEP 04 (2014) 010 [arXiv:1306.3987] [INSPIRE].
  95. [95]
    M. Cvetič, D. Klevers and H. Piragua, F-theory compactifications with multiple U(1)-factors: addendum, JHEP 12 (2013) 056 [arXiv:1307.6425] [INSPIRE].
  96. [96]
    M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1) × U(1) × U(1) gauge symmetry, JHEP 03 (2014) 021 [arXiv:1310.0463] [INSPIRE].
  97. [97]
    I. Antoniadis and G.K. Leontaris, F-GUTs with Mordell-Weil U(1)’s, Phys. Lett. B 735 (2014) 226 [arXiv:1404.6720] [INSPIRE].
  98. [98]
    M. Esole, M.J. Kang and S.-T. Yau, A new model for elliptic fibrations with a rank one Mordell-Weil group: I. Singular fibers and semi-stable degenerations, arXiv:1410.0003 [INSPIRE].
  99. [99]
    C. Lawrie, S. Schäfer-Nameki and J.-M. Wong, F-theory and all things rational: surveying U(1) symmetries with rational sections, JHEP 09 (2015) 144 [arXiv:1504.05593] [INSPIRE].
  100. [100]
    M. Cvetič, D. Klevers, H. Piragua and W. Taylor, General U(1) × U(1) F-theory compactifications and beyond: geometry of un-Higgsings and novel matter structure, JHEP 11 (2015) 204 [arXiv:1507.05954] [INSPIRE].
  101. [101]
    D.R. Morrison and D.S. Park, Tall sections from non-minimal transformations, JHEP 10 (2016) 033 [arXiv:1606.07444] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  102. [102]
    M. Bies, C. Mayrhofer and T. Weigand, Gauge backgrounds and zero-mode counting in F-theory, JHEP 11 (2017) 081 [arXiv:1706.04616] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  103. [103]
    M. Cvetič and L. Lin, The global gauge group structure of F-theory compactification with U(1)s, JHEP 01 (2018) 157 [arXiv:1706.08521].
  104. [104]
    M. Bies, C. Mayrhofer and T. Weigand, Algebraic cycles and local anomalies in F-theory, JHEP 11 (2017) 100 [arXiv:1706.08528] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  105. [105]
    M. Esole, M.J. Kang and S.-T. Yau, Mordell-Weil torsion, anomalies and phase transitions, arXiv:1712.02337 [INSPIRE].
  106. [106]
    Y. Kimura and S. Mizoguchi, Enhancements in F-theory models on moduli spaces of K3 surfaces with ADE rank 17, PTEP 2018 (2018) 043B05 [arXiv:1712.08539] [INSPIRE].
  107. [107]
    M. Esole and M.J. Kang, Flopping and slicing: SO(4) and Spin(4)-models, arXiv:1802.04802 [INSPIRE].
  108. [108]
    Y. Kimura, F-theory models on K3 surfaces with various Mordell-Weil ranks — Constructions that use quadratic base change of rational elliptic surfaces, JHEP 05 (2018) 048 [arXiv:1802.05195] [INSPIRE].
  109. [109]
    S.-J. Lee, D. Regalado and T. Weigand, 6d SCFTs and U(1) flavour symmetries, JHEP 11 (2018) 147 [arXiv:1803.07998] [INSPIRE].
  110. [110]
    M. Esole and M.J. Kang, Characteristic numbers of elliptic fibrations with non-trivial Mordell-Weil groups, arXiv:1808.07054 [INSPIRE].
  111. [111]
    S. Mizoguchi and T. Tani, Non-Cartan Mordell-Weil lattices of rational elliptic surfaces and heterotic/F-theory compactifications, arXiv:1808.08001.
  112. [112]
    M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].
  113. [113]
    K. Kodaira, On compact analytic surfaces II, Ann. Math. 77 (1963) 563.CrossRefzbMATHGoogle Scholar
  114. [114]
    K. Kodaira, On compact analytic surfaces III, Ann. Math. 78 (1963) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  115. [115]
    A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. IHES 21 (1964) 5.CrossRefzbMATHGoogle Scholar
  116. [116]
    J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular functions of one variable IV, B.J. Birch and W. Kuyk eds., Springer, Berlin Germany (1975).Google Scholar
  117. [117]
    J. Milnor, On simply connected 4-manifolds, talk given at the Symposium Internacional de Topologia Algebraica (International Symposium on Algebraic Topology), Mexico City, Mexico (1958).Google Scholar
  118. [118]
    S. Kondo, Automorphisms of algebraic K3 susfaces which act trivially on Picard groups, J. Math. Soc. Japan 44 (1992) 75.Google Scholar
  119. [119]
    K.S. Narain, M.H. Sarmadi and E. Witten, A note on toroidal compactification of heterotic string theory, Nucl. Phys. B 279 (1987) 369 [INSPIRE].
  120. [120]
    E.B. Vinberg, On the algebra of Siegel modular forms of genus 2, Trans. Moscow Math. Soc. 74 2013 1.Google Scholar
  121. [121]
    J. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962) 175.MathSciNetCrossRefzbMATHGoogle Scholar
  122. [122]
    G.W. Moore, Les Houches lectures on strings and arithmetic, hep-th/0401049 [INSPIRE].
  123. [123]
    K.I. Nishiyama, The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups, Japan. J. Math. 22 (1996), 293Google Scholar
  124. [124]
    J.H. Keum, A note on elliptic K3 surfaces, Trans. Amer. Math. Soc. 352 (2000) 2077.Google Scholar
  125. [125]
    R. Miranda and U. Persson, On extremal rational elliptic surfaces, Math. Z. 193 (1986) 537.MathSciNetCrossRefzbMATHGoogle Scholar
  126. [126]
    D.R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984) 105.Google Scholar
  127. [127]
    H. Inose, Defining equations of singular K3 surfaces and a notion of isogeny, proceedings of the International Symposium on Algebraic Geometry, January 10-14, Kyoto University, Kyoto, Japan (1977).Google Scholar
  128. [128]
    I. Shimada and D.Q. Zhang, Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces, Nagoya Math. J. 161 (2001) 23 [math/0007171].
  129. [129]
    M.J. Bertin et al., Classifications of elliptic fibrations of a singular K3 surface, Women in Numbers Europe (2015) 17 [arXiv:1501.07484].
  130. [130]
    M.J. Bertin and O. Lecacheux, Elliptic fibrations on the modular surface associated to Γ1(8), in Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds, R. Laza et al. eds., Fields Institute Communications volume 67, Springer, Germany (2013) [arXiv:1105.6312].
  131. [131]
    T. Shioda, K3 surfaces and sphere packings, J. Math. Soc. Japan 60 (2008) 1083.Google Scholar
  132. [132]
    K. Utsumi, Jacobian fibrations on the singular K3 surface of discriminant 3, J. Math. Soc. Japan 68 (2016) 1133, arXiv:1405.3577.
  133. [133]
    N. Nakayama, On Weierstrass models, in Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, H. Hijikata ed., Academic Press, U.S.A. (1988).Google Scholar
  134. [134]
    I. Dolgachev and M. Gross, Elliptic three-folds I: Ogg-Shafarevich theory, J. Alg. Geom. 3 (1994) 39.zbMATHGoogle Scholar
  135. [135]
    M. Gross, Elliptic three-folds II: multiple fibres, Trans. Amer. Math. Soc. 349 (1997) 3409.MathSciNetCrossRefzbMATHGoogle Scholar
  136. [136]
    P.S. Aspinwall and M. Gross, The SO(32) heterotic string on a K3 surface, Phys. Lett. B 387 (1996) 735 [hep-th/9605131] [INSPIRE].
  137. [137]
    P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    C. Mayrhofer, D.R. Morrison, O. Till and T. Weigand, Mordell-Weil torsion and the global structure of gauge groups in F-theory, JHEP 10 (2014) 16 [arXiv:1405.3656] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  139. [139]
    M.B. Green, J.H. Schwarz and P.C. West, Anomaly free chiral theories in six-dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].
  140. [140]
    A. Sagnotti, A note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].
  141. [141]
    J. Erler, Anomaly cancellation in six-dimensions, J. Math. Phys. 35 (1994) 1819 [hep-th/9304104] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  142. [142]
    J.H. Schwarz, Anomaly-free supersymmetric models in six-dimensions, Phys. Lett. B 371 (1996) 223 [hep-th/9512053] [INSPIRE].
  143. [143]
    F. Apruzzi, J.J. Heckman, D.R. Morrison and L. Tizzano, 4D gauge theories with conformal matter, JHEP 09 (2018) 088 [arXiv:1803.00582] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.KEK Theory Center, Institute of Particle and Nuclear Studies, KEKTsukubaJapan

Personalised recommendations