Journal of High Energy Physics

, 2019:26 | Cite as

Flavor symmetries and the topology of special Kähler structures at rank 1

  • Philip C. Argyres
  • Matteo LotitoEmail author
Open Access
Regular Article - Theoretical Physics


We propose a method for determining the flavor charge lattice of the continuous flavor symmetry of rank-1 4d \( \mathcal{N} \) = 2 superconformal field theories (SCFTs) and IR free gauge theories from topological invariants of the special Kähler structure of the mass-deformed Coulomb branches (CBs) of the theories. The method is based on the middle homology of the total space of the elliptic fibration over the CB, and is a generalization of the F-theory string web description of flavor charge lattices. The resulting lattices, which we call “string web lattices”, contain not only information about the flavor symmetry of the SCFT but also additional information encoded in the lattice metric derived from the middle homology intersection form. This additional information clearly reflects the low energy electric and magnetic charges of BPS states on the CB, but there are other properties of the string web lattice metric which we have not been able to understand in terms of properties of the BPS spectrum. We compute the string web lattices of all rank-1 SCFTs and IR free gauge theories. We find agreement with results obtained by other methods, and find in a few cases that the string web lattice gives additional information on the flavor symmetry.


Extended Supersymmetry Nonperturbative Effects Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    T. Banks, M.R. Douglas and N. Seiberg, Probing F-theory with branes, Phys. Lett. B 387 (1996) 278 [hep-th/9605199] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    O. Aharony, J. Sonnenschein and S. Yankielowicz, Interactions of strings and D-branes from M-theory, Nucl. Phys. B 474 (1996) 309 [hep-th/9603009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Sen, BPS states on a three-brane probe, Phys. Rev. D 55 (1997) 2501 [hep-th/9608005] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    M.R. Gaberdiel and B. Zwiebach, Exceptional groups from open strings, Nucl. Phys. B 518 (1998) 151 [hep-th/9709013] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O. Bergman, Three pronged strings and 1/4 BPS states in N = 4 superYang-Mills theory, Nucl. Phys. B 525 (1998) 104 [hep-th/9712211] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    M.R. Gaberdiel, T. Hauer and B. Zwiebach, Open string-string junction transitions, Nucl. Phys. B 525 (1998) 117 [hep-th/9801205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Mikhailov, N. Nekrasov and S. Sethi, Geometric realizations of BPS states in N = 2 theories, Nucl. Phys. B 531 (1998) 345 [hep-th/9803142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    O. DeWolfe and B. Zwiebach, String junctions for arbitrary Lie algebra representations, Nucl. Phys. B 541 (1999) 509 [hep-th/9804210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering the symmetries on [p,q] seven-branes: Beyond the Kodaira classification, Adv. Theor. Math. Phys. 3 (1999) 1785 [hep-th/9812028] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    T. Hauer, A. Iqbal and B. Zwiebach, Duality and Weyl symmetry of 7-brane configurations, JHEP 09 (2000) 042 [hep-th/0002127] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part I: physical constraints on relevant deformations, JHEP 02 (2018) 001 [arXiv:1505.04814] [INSPIRE].
  13. [13]
    P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part II: construction of special Kähler geometries and RG flows, JHEP 02 (2018) 002 [arXiv:1601.00011] [INSPIRE].
  14. [14]
    P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Expanding the landscape of \( \mathcal{N} \) = 2 rank 1 SCFTs, JHEP 05 (2016) 088 [arXiv:1602.02764] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \( \mathcal{N} \) = 2 SCFTs. Part III: enhanced Coulomb branches and central charges, JHEP 02 (2018) 003 [arXiv:1609.04404] [INSPIRE].
  16. [16]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E(n) global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Noguchi, S. Terashima and S.-K. Yang, N = 2 superconformal field theory with ADE global symmetry on a D3-brane probe, Nucl. Phys. B 556 (1999) 115 [hep-th/9903215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  22. [22]
    D. Xie and S.-T. Yau, 4d N = 2 SCFT and singularity theory Part I: Classification, arXiv:1510.01324 [INSPIRE].
  23. [23]
    A.D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hep-th/9910182 [INSPIRE].
  24. [24]
    S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences, arXiv:1006.3435 [INSPIRE].
  25. [25]
    S. Cecotti and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4 dimensions, Surveys in differential geometry 18 (2013) [arXiv:1103.5832] [INSPIRE].
  26. [26]
    M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi and C. Vafa, BPS Quivers and Spectra of Complete N = 2 Quantum Field Theories, Commun. Math. Phys. 323 (2013) 1185 [arXiv:1109.4941] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi and C. Vafa, \( \mathcal{N} \) = 2 quantum field theories and their BPS quivers, Adv. Theor. Math. Phys. 18 (2014) 27 [arXiv:1112.3984] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP 05 (2015) 020 [arXiv:1408.6522] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    R. Donagi and E. Markman, Cubics, integrable Systems and Calabi-Yau threefolds, alg-geom/9408004.
  31. [31]
    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Caorsi and S. Cecotti, Special Arithmetic of Flavor, JHEP 08 (2018) 057 [arXiv:1803.00531] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    P.C. Argyres, Y. Lü and M. Martone, Seiberg-Witten geometries for Coulomb branch chiral rings which are not freely generated, JHEP 06 (2017) 144 [arXiv:1704.05110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    P.C. Argyres and K. Narayan, String webs from field theory, JHEP 03 (2001) 047 [hep-th/0101114] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    D.S. Freed, Special Kähler manifolds, Commun. Math. Phys. 203 (1999) 31 [hep-th/9712042] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    K. Kodaira, On the structure of compact complex analytic surfaces. I, Am. J. Math. 86 (1964) 751.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    K. Kodaira, On the structure of compact complex analytic surfaces. II, Am. J. Math. 88 (1966) 682.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    K. Kodaira, On the structure of compact complex analytic surfaces. III, Am. J. Math. 90 (1968) 55.MathSciNetCrossRefGoogle Scholar
  39. [39]
    E. Witten, An SU(2) Anomaly, Phys. Lett. B 117 (1982) 324 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    P.A.M. Dirac, Quantised singularities in the electromagnetic field,, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    J.S. Schwinger, A Magnetic model of matter, Science 165 (1969) 757 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Zwanziger, Quantum field theory of particles with both electric and magnetic charges, Phys. Rev. 176 (1968) 1489 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  44. [44]
    A. Bourget, A. Pini and D. Rodriíguez-Gómez, The Importance of Being Disconnected, A Principal Extension for Serious Groups, arXiv:1804.01108 [INSPIRE].
  45. [45]
    P.C. Argyres and M. Martone, Coulomb branches with complex singularities, JHEP 06 (2018) 045 [arXiv:1804.03152] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    P.C. Argyres and J. Wittig, Mass deformations of four-dimensional, rank 1, N = 2 superconformal field theories, J. Phys. Conf. Ser. 462 (2013) 012001 [arXiv:1007.5026] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of CincinnatiCincinnatiU.S.A.
  2. 2.Amherst Center for Fundamental Interactions, Physics DepartmentUniversity of MassachusettsAmherstU.S.A.

Personalised recommendations