Advertisement

Journal of High Energy Physics

, 2019:24 | Cite as

Multiparticle production at mid-rapidity in the color-glass condensate

  • Mauricio Martinez
  • Matthew D. SievertEmail author
  • Douglas E. Wertepny
Open Access
Regular Article - Theoretical Physics
  • 4 Downloads

Abstract

In this paper, we compute a number of cross sections for the production of multiple particles at mid-rapidity in the semi-dilute / dense regime of the color-glass condensate (CGC) effective field theory. In particular, we present new results for the production of two quark-antiquark pairs (whether the same or different flavors) and for the production of one quark-antiquark pair and a gluon. We also demonstrate the existence of a simple mapping which transforms the cross section to produce a quark-antiquark pair into the corresponding cross section to produce a gluon, which we use to obtain various results and to cross-check them against the literature. We also discuss hadronization effects in the heavy flavor sector, writing explicit expressions for the production of various combinations of D and \( \overline{D} \) mesons, J/ψ mesons, and light hadrons. The various multiparticle cross sections presented here contain a wealth of information and can be used to study heavy flavor production, charge-dependent correlations, and “collective” flow phenomena arising from initial-state dynamics.

Keywords

Perturbative QCD Quark-Gluon Plasma Resummation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641 [INSPIRE].
  2. [2]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].Google Scholar
  3. [3]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].
  4. [4]
    R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer and G.G. Ross, Perturbation Theory and the Parton Model in QCD, Nucl. Phys. B 152 (1979) 285 [INSPIRE].
  5. [5]
    G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities Beyond Leading Order: The Nonsinglet Case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].
  6. [6]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  8. [8]
    Y.V. Kovchegov, Small-x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
  9. [9]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
  10. [10]
    J. Jalilian-Marian, A. Kovner, L.D. McLerran and H. Weigert, The intrinsic glue distribution at very small x, Phys. Rev. D 55 (1997) 5414 [hep-ph/9606337] [INSPIRE].
  11. [11]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
  12. [12]
    E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].
  13. [13]
    Y.V. Kovchegov and E. Levin, Quantum Chromodynamics at High Energy, Cambridge University Press, (2012).Google Scholar
  14. [14]
    T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Bose enhancement and the ridge, Phys. Lett. B 751 (2015) 448 [arXiv:1503.07126] [INSPIRE].
  15. [15]
    T. Altinoluk, N. Armesto and D.E. Wertepny, Correlations and the ridge in the Color Glass Condensate beyond the glasma graph approximation, JHEP 05 (2018) 207 [arXiv:1804.02910] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Luzum and H. Petersen, Initial State Fluctuations and Final State Correlations in Relativistic Heavy-Ion Collisions, J. Phys. G 41 (2014) 063102 [arXiv:1312.5503] [INSPIRE].
  17. [17]
    D.E. Kharzeev, J. Liao, S.A. Voloshin and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisions — A status report, Prog. Part. Nucl. Phys. 88 (2016) 1 [arXiv:1511.04050] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    CMS collaboration, Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pP b and PbPb collisions at the CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 044912 [arXiv:1708.01602] [INSPIRE].
  19. [19]
    Y.V. Kovchegov and A.H. Mueller, Gluon production in current-nucleus and nucleon-nucleus collisions in a quasiclassical approximation, Nucl. Phys. B 529 (1998) 451 [hep-ph/9802440] [INSPIRE].
  20. [20]
    J.P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the color glass condensate approach. 1. Gluon production and the Cronin effect, Nucl. Phys. A 743 (2004) 13 [hep-ph/0402256] [INSPIRE].
  21. [21]
    Y.V. Kovchegov and K. Tuchin, Inclusive gluon production in DIS at high parton density, Phys. Rev. D 65 (2002) 074026 [hep-ph/0111362] [INSPIRE].
  22. [22]
    A. Dumitru and L.D. McLerran, How protons shatter colored glass, Nucl. Phys. A 700 (2002) 492 [hep-ph/0105268] [INSPIRE].
  23. [23]
    B.Z. Kopeliovich, A.V. Tarasov and A. Schafer, Bremsstrahlung of a quark propagating through a nucleus, Phys. Rev. C 59 (1999) 1609 [hep-ph/9808378] [INSPIRE].
  24. [24]
    J. Jalilian-Marian and Y.V. Kovchegov, Saturation physics and deuteron-Gold collisions at RHIC, Prog. Part. Nucl. Phys. 56 (2006) 104 [hep-ph/0505052] [INSPIRE].
  25. [25]
    E.M. Levin, M.G. Ryskin, Yu. M. Shabelski and A.G. Shuvaev, Heavy quark production in semihard nucleon interactions, Sov. J. Nucl. Phys. 53 (1991) 657 [INSPIRE].Google Scholar
  26. [26]
    J.P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the color glass condensate approach. 2. Quark production, Nucl. Phys. A 743 (2004) 57 [hep-ph/0402257] [INSPIRE].
  27. [27]
    Y.V. Kovchegov and K. Tuchin, Production of \( q\overline{q} \) pairs in proton-nucleus collisions at high energies, Phys. Rev. D 74 (2006) 054014 [hep-ph/0603055] [INSPIRE].
  28. [28]
    F. Gelis and R. Venugopalan, Large mass \( q\overline{q} \) production from the color glass condensate, Phys. Rev. D 69 (2004) 014019 [hep-ph/0310090] [INSPIRE].
  29. [29]
    H. Fujii, F. Gelis and R. Venugopalan, Quark pair production in high energy pA collisions: General features, Nucl. Phys. A 780 (2006) 146 [hep-ph/0603099] [INSPIRE].
  30. [30]
    F. Gelis, K. Kajantie and T. Lappi, Chemical thermalization in relativistic heavy ion collisions, Phys. Rev. Lett. 96 (2006) 032304 [hep-ph/0508229] [INSPIRE].
  31. [31]
    F. Gelis, K. Kajantie and T. Lappi, Quark-antiquark production from classical fields in heavy ion collisions: 1+1 dimensions, Phys. Rev. C 71 (2005) 024904 [hep-ph/0409058] [INSPIRE].
  32. [32]
    F. Gelis and N. Tanji, Quark production in heavy ion collisions: formalism and boost invariant fermionic light-cone mode functions, JHEP 02 (2016) 126 [arXiv:1506.03327] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N. Tanji and J. Berges, Nonequilibrium quark production in the expanding QCD plasma, Phys. Rev. D 97 (2018) 034013 [arXiv:1711.03445] [INSPIRE].
  34. [34]
    Y.V. Kovchegov and D.E. Wertepny, Long-Range Rapidity Correlations in Heavy-Light Ion Collisions, Nucl. Phys. A 906 (2013) 50 [arXiv:1212.1195] [INSPIRE].
  35. [35]
    A. Kovner and M. Lublinsky, Angular and long range rapidity correlations in particle production at high energy, Int. J. Mod. Phys. E 22 (2013) 1330001 [arXiv:1211.1928] [INSPIRE].
  36. [36]
    T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Quark correlations in the Color Glass Condensate: Pauli blocking and the ridge, Phys. Rev. D 95 (2017) 034025 [arXiv:1610.03020] [INSPIRE].
  37. [37]
    A. Kovner, M. Lublinsky and V. Skokov, Initial state qqg correlations as a background for the Chiral Magnetic Effect in collision of small systems, Phys. Rev. D 96 (2017) 096003 [arXiv:1706.02330] [INSPIRE].
  38. [38]
    T. Altinoluk, N. Armesto, A. Kovner and M. Lublinsky, Double and triple inclusive gluon production at mid rapidity: quantum interference in p-A scattering, Eur. Phys. J. C 78 (2018) 702 [arXiv:1805.07739] [INSPIRE].
  39. [39]
    A. Kovner and A.H. Rezaeian, Double parton scattering in the color glass condensate: Hanbury-Brown-Twiss correlations in double inclusive photon production, Phys. Rev. D 95 (2017) 114028 [arXiv:1701.00494] [INSPIRE].
  40. [40]
    R. Boussarie, Y. Hatta, B.-W. Xiao and F. Yuan, Probing the Weizsäcker-Williams gluon Wigner distribution in pp collisions, Phys. Rev. D 98 (2018) 074015 [arXiv:1807.08697] [INSPIRE].
  41. [41]
    K. Dusling, D. Fernandez-Fraile and R. Venugopalan, Three-particle correlation from glasma flux tubes, Nucl. Phys. A 828 (2009) 161 [arXiv:0902.4435] [INSPIRE].
  42. [42]
    A. Dumitru, A. Hayashigaki and J. Jalilian-Marian, The color glass condensate and hadron production in the forward region, Nucl. Phys. A 765 (2006) 464 [hep-ph/0506308] [INSPIRE].
  43. [43]
    T. Altinoluk and A. Kovner, Particle Production at High Energy and Large Transverse Momentum: ‘The Hybrid Formalism’ Revisited, Phys. Rev. D 83 (2011) 105004 [arXiv:1102.5327] [INSPIRE].
  44. [44]
    T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Single-inclusive particle production in proton-nucleus collisions at next-to-leading order in the hybrid formalism, Phys. Rev. D 91 (2015) 094016 [arXiv:1411.2869] [INSPIRE].
  45. [45]
    T. Altinoluk, N. Armesto, G. Beuf, A. Kovner and M. Lublinsky, Heavy quarks in proton-nucleus collisions: the hybrid formalism, Phys. Rev. D 93 (2016) 054049 [arXiv:1511.09415] [INSPIRE].
  46. [46]
    A. Kovner and A.H. Rezaeian, Double parton scattering in the CGC: Double quark production and effects of quantum statistics, Phys. Rev. D 96 (2017) 074018 [arXiv:1707.06985] [INSPIRE].
  47. [47]
    A. Kovner and A.H. Rezaeian, Multiquark production in p + A collisions: Quantum interference effects, Phys. Rev. D 97 (2018) 074008 [arXiv:1801.04875] [INSPIRE].
  48. [48]
    T. Altinoluk, N. Armesto, A. Kovner, M. Lublinsky and E. Petreska, Soft photon and two hard jets forward production in proton-nucleus collisions, JHEP 04 (2018) 063 [arXiv:1802.01398] [INSPIRE].
  49. [49]
    K. Dusling, M. Mace and R. Venugopalan, Multiparticle collectivity from initial state correlations in high energy proton-nucleus collisions, Phys. Rev. Lett. 120 (2018) 042002 [arXiv:1705.00745] [INSPIRE].
  50. [50]
    K. Dusling, M. Mace and R. Venugopalan, Parton model description of multiparticle azimuthal correlations in pA collisions, Phys. Rev. D 97 (2018) 016014 [arXiv:1706.06260] [INSPIRE].
  51. [51]
    Y.V. Kovchegov and V.V. Skokov, How classical gluon fields generate odd azimuthal harmonics for the two-gluon correlation function in high-energy collisions, Phys. Rev. D 97 (2018) 094021 [arXiv:1802.08166] [INSPIRE].
  52. [52]
    M. Mace, V.V. Skokov, P. Tribedy and R. Venugopalan, Systematics of azimuthal anisotropy harmonics in proton-nucleus collisions at the LHC from the Color Glass Condensate, Phys. Lett. B 788 (2019) 161 [arXiv:1807.00825] [INSPIRE].
  53. [53]
    M. Mace, V.V. Skokov, P. Tribedy and R. Venugopalan, Hierarchy of azimuthal anisotropy harmonics in collisions of small systems from the Color Glass Condensate, Phys. Rev. Lett. 121 (2018) 052301 [arXiv:1805.09342] [INSPIRE].
  54. [54]
    M. Martinez, M.D. Sievert and D.E. Wertepny, Toward Initial Conditions of Conserved Charges Part I: Spatial Correlations of Quarks and Antiquarks, JHEP 07 (2018) 003 [arXiv:1801.08986] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Y.-Q. Ma, P. Tribedy, R. Venugopalan and K. Watanabe, Event engineering studies for heavy flavor production and hadronization in high multiplicity hadron-hadron and hadron-nucleus collisions, Phys. Rev. D 98 (2018) 074025 [arXiv:1803.11093] [INSPIRE].
  56. [56]
    S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].
  57. [57]
    G.P. Lepage and S.J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].
  58. [58]
    J. Huang, Z.-B. Kang, I. Vitev and H. Xing, Photon-tagged and B-meson-tagged b-jet production at the LHC, Phys. Lett. B 750 (2015) 287 [arXiv:1505.03517] [INSPIRE].
  59. [59]
    M. Nahrgang, J. Aichelin, P.B. Gossiaux and K. Werner, Azimuthal correlations of heavy quarks in Pb + Pb collisions at \( \sqrt{s}=2.76 \) TeV at the CERN Large Hadron Collider, Phys. Rev. C 90 (2014) 024907 [arXiv:1305.3823] [INSPIRE].
  60. [60]
    J. Collins, Foundations of perturbative QCD Cambridge University Press, Cambridge, U.K., (2011).Google Scholar
  61. [61]
    E. Braaten, K.-m. Cheung, S. Fleming and T.C. Yuan, Perturbative QCD fragmentation functions as a model for heavy quark fragmentation, Phys. Rev. D 51 (1995) 4819 [hep-ph/9409316] [INSPIRE].
  62. [62]
    M. Boglione, J. Collins, L. Gamberg, J.O. Gonzalez-Hernandez, T.C. Rogers and N. Sato, Kinematics of Current Region Fragmentation in Semi-Inclusive Deeply Inelastic Scattering, Phys. Lett. B 766 (2017) 245 [arXiv:1611.10329] [INSPIRE].
  63. [63]
    Y.-Q. Ma and R. Vogt, Quarkonium Production in an Improved Color Evaporation Model, Phys. Rev. D 94 (2016) 114029 [arXiv:1609.06042] [INSPIRE].
  64. [64]
    G.A. Chirilli, B.-W. Xiao and F. Yuan, Inclusive Hadron Productions in pA Collisions, Phys. Rev. D 86 (2012) 054005 [arXiv:1203.6139] [INSPIRE].
  65. [65]
    G.A. Chirilli, B.-W. Xiao and F. Yuan, One-loop Factorization for Inclusive Hadron Production in pA Collisions in the Saturation Formalism, Phys. Rev. Lett. 108 (2012) 122301 [arXiv:1112.1061] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
  67. [67]
    F. Dominguez, C. Marquet, A.M. Stasto and B.-W. Xiao, Universality of multiparticle production in QCD at high energies, Phys. Rev. D 87 (2013) 034007 [arXiv:1210.1141] [INSPIRE].
  68. [68]
    L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
  69. [69]
    T. Lappi, Wilson line correlator in the MV model: Relating the glasma to deep inelastic scattering, Eur. Phys. J. C 55 (2008) 285 [arXiv:0711.3039] [INSPIRE].
  70. [70]
    Y.V. Kovchegov, NonAbelian Weizsäcker-Williams field and a two-dimensional effective color charge density for a very large nucleus, Phys. Rev. D 54 (1996) 5463 [hep-ph/9605446] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Mauricio Martinez
    • 1
  • Matthew D. Sievert
    • 2
    Email author
  • Douglas E. Wertepny
    • 3
  1. 1.Department of PhysicsNorth Carolina State UniversityRaleighU.S.A.
  2. 2.Theoretical Division, Los Alamos National LaboratoryLos AlamosU.S.A.
  3. 3.Departamento de Física de Partículas and IGFAEUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations