Advertisement

Journal of High Energy Physics

, 2019:23 | Cite as

Perturbative classical conformal blocks as Steiner trees on the hyperbolic disk

  • Konstantin AlkalaevEmail author
  • Mikhail Pavlov
Open Access
Regular Article - Theoretical Physics
  • 6 Downloads

Abstract

We consider the Steiner tree problem in hyperbolic geometry in the context of the AdS/CFT duality between large-c conformal blocks on the boundary and particle motions in the bulk. The Steiner trees are weighted graphs on the Poincare disk with a number of endpoints and trivalent vertices connected to each other by edges in such a way that an overall length is minimum. We specify a particular class of Steiner trees that we call holographic. Their characteristic property is that a holographic Steiner tree with N endpoints can be inscribed into an N-gon with N − 1 ideal vertices. The holographic Steiner trees are dual to large-c conformal blocks. Particular examples of N = 2, 3, 4 Steiner trees as well as their dual conformal blocks are explicitly calculated. We discuss geometric properties of the holographic Steiner trees and their realization in CFT terms. It is shown that connectivity and cuts of the Steiner trees encode the factorization properties of large-c conformal blocks.

Keywords

AdS-CFT Correspondence Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    T. Hartman, Entanglement entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  4. [4]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Caputa, J. Simón, A. Stikonas and T. Takayanagi, Quantum entanglement of localized excited states at finite temperature, JHEP 01 (2015) 102 [arXiv:1410.2287] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    K.B. Alkalaev and V.A. Belavin, Classical conformal blocks via AdS/CFT correspondence, JHEP 08 (2015) 049 [arXiv:1504.05943] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].ADSzbMATHGoogle Scholar
  10. [10]
    K.B. Alkalaev and V.A. Belavin, Monodromic vs geodesic computation of Virasoro classical conformal blocks, Nucl. Phys. B 904 (2016) 367 [arXiv:1510.06685] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A.L. Fitzpatrick and J. Kaplan, Conformal blocks beyond the semi-classical limit, JHEP 05 (2016) 075 [arXiv:1512.03052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    P. Banerjee, S. Datta and R. Sinha, Higher-point conformal blocks and entanglement entropy in heavy states, JHEP 05 (2016) 127 [arXiv:1601.06794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    B. Chen, J.-q. Wu and J.-j. Zhang, Holographic description of 2D conformal block in semi-classical limit, JHEP 10 (2016) 110 [arXiv:1609.00801] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    K.B. Alkalaev, Many-point classical conformal blocks and geodesic networks on the hyperbolic plane, JHEP 12 (2016) 070 [arXiv:1610.06717] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. Kraus and A. Maloney, A cardy formula for three-point coefficients or how the black hole got its spots, JHEP 05 (2017) 160 [arXiv:1608.03284] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    O. Hulík, T. Procházka and J. Raeymaekers, Multi-centered AdS 3 solutions from Virasoro conformal blocks, JHEP 03 (2017) 129 [arXiv:1612.03879] [INSPIRE].
  17. [17]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Exact Virasoro blocks from Wilson lines and background-independent operators, JHEP 07 (2017) 092 [arXiv:1612.06385] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    V.A. Belavin and R.V. Geiko, Geodesic description of Heavy-Light Virasoro blocks, JHEP 08 (2017) 125 [arXiv:1705.10950] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. Maxfield, A view of the bulk from the worldline, arXiv:1712.00885 [INSPIRE].
  20. [20]
    Y. Kusuki, New properties of large-c conformal blocks from recursion relation, JHEP 07 (2018) 010 [arXiv:1804.06171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E.M. Brehm, D. Das and S. Datta, Probing thermality beyond the diagonal, Phys. Rev. D 98 (2018) 126015 [arXiv:1804.07924] [INSPIRE].ADSGoogle Scholar
  22. [22]
    Y. Kusuki, Large c Virasoro blocks from monodromy method beyond known limits, JHEP 08 (2018) 161 [arXiv:1806.04352] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A.L. Fitzpatrick et al., Covariant approaches to superconformal blocks, JHEP 08 (2014) 129 [arXiv:1402.1167] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. de Boer et al., Higher spin entanglement and \( \mathcal{W} \) N conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  26. [26]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS geometry of conformal blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Beccaria, A. Fachechi and G. Macorini, Virasoro vacuum block at next-to-leading order in the heavy-light limit, JHEP 02 (2016) 072 [arXiv:1511.05452] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    K.B. Alkalaev and V.A. Belavin, Holographic interpretation of 1-point toroidal block in the semiclassical limit, JHEP 06 (2016) 183 [arXiv:1603.08440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    K.B. Alkalaev, R.V. Geiko and V.A. Rappoport, Various semiclassical limits of torus conformal blocks, JHEP 04 (2017) 070 [arXiv:1612.05891] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Bagchi, M. Gary and Zodinmawia, The nuts and bolts of the BMS Bootstrap, Class. Quant. Grav. 34 (2017) 174002 [arXiv:1705.05890] [INSPIRE].
  31. [31]
    P. Kraus et al., Witten Diagrams for Torus Conformal Blocks, JHEP 09 (2017) 149 [arXiv:1706.00047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    K.B. Alkalaev and V.A. Belavin, Holographic duals of large-c torus conformal blocks, JHEP 10 (2017) 140 [arXiv:1707.09311] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    P. Menotti, Torus classical conformal blocks, Mod. Phys. Lett. A 33 (2018) 1850166 [arXiv:1805.07788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    K. Alkalaev and V. Belavin, Large-c superconformal torus blocks, JHEP 08 (2018) 042 [arXiv:1805.12585] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    V. Belavin and R. Geiko, c-recursion for multi-point superconformal blocks. NS sector, JHEP 08 (2018) 112 [arXiv:1806.09563] [INSPIRE].
  36. [36]
    Y. Hikida and T. Uetoko, Superconformal blocks from Wilson lines with loop corrections, JHEP 08 (2018) 101 [arXiv:1806.05836] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Bombini, S. Giusto and R. Russo, A note on the Virasoro blocks at order 1/c, Eur. Phys. J. C 79 (2019) 3 [arXiv:1807.07886] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    I. Lodato, W. Merbis and Zodinmawia, Supersymmetric Galilean conformal blocks, JHEP 09 (2018) 086 [arXiv:1807.02031] [INSPIRE].
  39. [39]
    O. Hulík, J. Raeymaekers and O. Vasilakis, Multi-centered higher spin solutions from \( \mathcal{W} \) N conformal blocks, JHEP 11 (2018) 101 [arXiv:1809.01387] [INSPIRE].
  40. [40]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    A. Zamolodchikov and A. Zamolodchikov, Conformal field theory and critical phenomena in two-dimensional systems, CRC Press, U.S.A. (2009).zbMATHGoogle Scholar
  42. [42]
    E. Perlmutter, Virasoro conformal blocks in closed form, JHEP 08 (2015) 088 [arXiv:1502.07742] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    K.B. Alkalaev and V.A. Belavin, From global to heavy-light: 5-point conformal blocks, JHEP 03 (2016) 184 [arXiv:1512.07627] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    M. Cho, S. Collier and X. Yin, Recursive representations of arbitrary Virasoro conformal blocks, arXiv:1703.09805 [INSPIRE].
  45. [45]
    V. Rosenhaus, Multipoint conformal blocks in the comb channel, arXiv:1810.03244 [INSPIRE].
  46. [46]
    A. Zamolodchikov, Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, Zh. Eksp. Teor. Fiz. 90 (1986) 1808.MathSciNetGoogle Scholar
  47. [47]
    M. Piatek, Classical torus conformal block, N = 2* twisted superpotential and the accessory parameter of Lamé equation, JHEP 03 (2014) 124 [arXiv:1309.7672] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Ivanov and A. Tuzhilin, Minimal networks. The Steiner problem and its generalizations, CRC Press, U.S.A. (1994).Google Scholar
  49. [49]
    R. Courant and H. Robbins, What is mathematics? An elementary introduction to ideas and methods, Oxford University Press, Oxford U.K. (1941).zbMATHGoogle Scholar
  50. [50]
    S. Gueron and R. Tessler, The Fermat-Steiner problem, Amer. Math. Month. 109 (2002) 443.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    M. Link, The Fermat problem of a hyperbolic triangle, Bellarmine University, Louisville, U.S.A. (2006).Google Scholar
  52. [52]
    A.N. Zachos, Location of the weighted Fermat-Torricelli point on the K-plane (Part II), Analysis 34 (2014) 111.MathSciNetzbMATHGoogle Scholar
  53. [53]
    S. Datta, J.R. David and S.P. Kumar, Conformal perturbation theory and higher spin entanglement entropy on the torus, JHEP 04 (2015) 041 [arXiv:1412.3946] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of the conformal block, Teor. Mat. Fiz. 73 (1987) 103.CrossRefGoogle Scholar
  55. [55]
    D. Harlow, J. Maltz and E. Witten, Analytic continuation of Liouville theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    N. Seiberg, Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    A. Litvinov, S. Lukyanov, N. Nekrasov and A. Zamolodchikov, Classical conformal blocks and Painleve VI, JHEP 07 (2014) 144 [arXiv:1309.4700] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    H. Hirai, K. Tamaoka and T. Yokoya, Towards entanglement of purification for conformal field theories, PTEP 2018 (2018) 063B03 [arXiv:1803.10539] [INSPIRE].
  59. [59]
    P. Ruggiero, E. Tonni and P. Calabrese, Entanglement entropy of two disjoint intervals and the recursion formula for conformal blocks, J. Stat. Mech. 1811 (2018) 113101 [arXiv:1805.05975] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    Y. Kusuki, Light cone bootstrap in general 2D CFTs and entanglement from light cone singularity, JHEP 01 (2019) 025 [arXiv:1810.01335] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.I.E. Tamm Department of Theoretical PhysicsP.N. Lebedev Physical InstituteMoscowRussia
  2. 2.Department of General and Applied PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations