Advertisement

Journal of High Energy Physics

, 2019:13 | Cite as

USp(2Nc) SQCD3 with antisymmetric: dualities and symmetry enhancements

  • Antonio AmaritiEmail author
  • Luca Cassia
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

We study various aspects of the 4d/3d reduction of \( \mathcal{N} \) = 1 dualities involving USp(2Nc) gauge theories with 2Nf fundamentals and one antisymmetric. We discuss the non-trivial role played by the monopole superpotentials in the reduction and obtain new 3d dualities for models with both symplectic and unitary gauge groups. For Nf = 4 we observe interesting webs of dualities and symmetry enhancements, recovering and extending some results already appeared in the literature.

Keywords

Global Symmetries Supersymmetry and Duality Field Theories in Lower Dimensions Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  3. [3]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037 [arXiv:1305.7235] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Gur-Ari and R. Yacoby, Three Dimensional Bosonization From Supersymmetry, JHEP 11 (2015) 013 [arXiv:1507.04378] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and Mirror Symmetry, Phys. Rev. D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett. 118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    O. Aharony, S. Jain and S. Minwalla, Flows, Fixed Points and Duality in Chern-Simons-matter theories, JHEP 12 (2018) 058 [arXiv:1808.03317] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Gomis, Z. Komargodski and N. Seiberg, Phases Of Adjoint QCD 3 And Dualities, SciPost Phys. 5 (2018) 007 [arXiv:1710.03258] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Cordova, P.-S. Hsin and N. Seiberg, Global Symmetries, Counterterms and Duality in Chern-Simons Matter Theories with Orthogonal Gauge Groups, SciPost Phys. 4 (2018) 021 [arXiv:1711.10008] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Córdova, P.-S. Hsin and N. Seiberg, Time-Reversal Symmetry, Anomalies and Dualities in (2 + 1)d, SciPost Phys. 5 (2018) 006 [arXiv:1712.08639] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Kutasov, A. Schwimmer and N. Seiberg, Chiral rings, singularity theory and electric-magnetic duality, Nucl. Phys. B 459 (1996) 455 [hep-th/9510222] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, JHEP 02 (2017) 075 [arXiv:1607.04281] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    P. Agarwal, K. Maruyoshi and J. Song, \( \mathcal{N} \) = 1 Deformations and RG flows of \( \mathcal{N} \) = 2 SCFTs, part II: non-principal deformations, JHEP 12 (2016) 103 [arXiv:1610.05311] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1 dimensions, JHEP 10 (2017) 173 [arXiv:1706.04949] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    P. Agarwal, A. Sciarappa and J. Song, \( \mathcal{N} \) = 1 Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 211 [arXiv:1707.04751] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    K. Nii, 3d duality with adjoint matter from 4d duality, JHEP 02 (2015) 024 [arXiv:1409.3230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Amariti, D. Forcella, C. Klare, D. Orlando and S. Reffert, 4D/3D reduction of dualities: mirrors on the circle, JHEP 10 (2015) 048 [arXiv:1504.02783] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Amariti, Integral identities for 3d dualities with SP(2N) gauge groups, arXiv:1509.02199 [INSPIRE].
  22. [22]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    F. Benini, S. Benvenuti and S. Pasquetti, SUSY monopole potentials in 2 + 1 dimensions, JHEP 08 (2017) 086 [arXiv:1703.08460] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    T. Dimofte and D. Gaiotto, An E7 Surprise, JHEP 10 (2012) 129 [arXiv:1209.1404] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Benvenuti and S. Pasquetti, 3d \( \mathcal{N} \) = 2 mirror symmetry, pq-webs and monopole superpotentials, JHEP 08 (2016) 136 [arXiv:1605.02675] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Amariti, D. Orlando and S. Reffert, Monopole Quivers and new 3D N = 2 dualities, Nucl. Phys. B 924 (2017) 153 [arXiv:1705.09297] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Amariti, I. Garozzo and N. Mekareeya, New 3d \( \mathcal{N} \) = 2 dualities from quadratic monopoles, JHEP 11 (2018) 135 [arXiv:1806.01356] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    K.A. Intriligator, R.G. Leigh and M.J. Strassler, New examples of duality in chiral and nonchiral supersymmetric gauge theories, Nucl. Phys. B 456 (1995) 567 [hep-th/9506148] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    C. Csáki, W. Skiba and M. Schmaltz, Exact results and duality for SP(2N) SUSY gauge theories with an antisymmetric tensor, Nucl. Phys. B 487 (1997) 128 [hep-th/9607210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    V.P. Spiridonov and G.S. Vartanov, Superconformal indices for N = 1 theories with multiple duals, Nucl. Phys. B 824 (2010) 192 [arXiv:0811.1909] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S.S. Razamat and G. Zafrir, E 8 orbits of IR dualities, JHEP 11 (2017) 115 [arXiv:1709.06106] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    D. Gang, Y. Tachikawa and K. Yonekura, Smallest 3d hyperbolic manifolds via simple 3d theories, Phys. Rev. D 96 (2017) 061701 [arXiv:1706.06292] [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Gang and K. Yonekura, Symmetry enhancement and closing of knots in 3d/3d correspondence, JHEP 07 (2018) 145 [arXiv:1803.04009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    D. Gaiotto, Z. Komargodski and J. Wu, Curious Aspects of Three-Dimensional \( \mathcal{N} \) = 1 SCFTs, JHEP 08 (2018) 004 [arXiv:1804.02018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    F. Benini and S. Benvenuti, N = 1 QED in 2 + 1 dimensions: Dualities and enhanced symmetries, arXiv:1804.05707 [INSPIRE].
  36. [36]
    S. Benvenuti, A tale of exceptional 3d dualities, arXiv:1809.03925 [INSPIRE].
  37. [37]
    A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    V. Niarchos, Seiberg Duality in Chern-Simons Theories with Fundamental and Adjoint Matter, JHEP 11 (2008) 001 [arXiv:0808.2771] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    V. Niarchos, R-charges, Chiral Rings and RG Flows in Supersymmetric Chern-Simons-Matter Theories, JHEP 05 (2009) 054 [arXiv:0903.0435] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    O. Aharony, IR duality in d = 3 N = 2 supersymmetric USp(2N c) and U(N c) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K.A. Intriligator and P. Pouliot, Exact superpotentials, quantum vacua and duality in supersymmetric SP(N c) gauge theories, Phys. Lett. B 353 (1995) 471 [hep-th/9505006] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H. Kim and J. Park, Aharony Dualities for 3d Theories with Adjoint Matter, JHEP 06 (2013) 106 [arXiv:1302.3645] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Amariti and C. Klare, A journey to 3d: exact relations for adjoint SQCD from dimensional reduction, JHEP 05 (2015) 148 [arXiv:1409.8623] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    F. van de Bult, Hyperbolic Hypergeometric Functions, Ph.D. Thesis (2007) [http://math.caltech.edu/~vdbult/Thesis.pdf].
  47. [47]
    N. Aghaei, A. Amariti and Y. Sekiguchi, Notes on Integral Identities for 3d Supersymmetric Dualities, JHEP 04 (2018) 022 [arXiv:1709.08653] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    E.M. Rains, Transformations of elliptic hypergometric integrals, [math/0309252].
  49. [49]
    E.M. Rains, Limits of elliptic hypergeometric integrals, Ramanujan J. 18 (2007) 257 [math/0607093].
  50. [50]
    K.A. Intriligator, New RG fixed points and duality in supersymmetric SP(N c) and SO(N c) gauge theories, Nucl. Phys. B 448 (1995) 187 [hep-th/9505051] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    A. Amariti and C. Klare, Chern-Simons and RG Flows: Contact with Dualities, JHEP 08 (2014) 144 [arXiv:1405.2312] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    M. Fazzi, A. Lanir, S.S. Razamat and O. Sela, Chiral 3d SU(3) SQCD and \( \mathcal{N} \) = 2 mirror duality, JHEP 11 (2018) 025 [arXiv:1808.04173] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    S.S. Razamat, O. Sela and G. Zafrir, Between Symmetry and Duality in Supersymmetric Quantum Field Theories, Phys. Rev. Lett. 120 (2018) 071604 [arXiv:1711.02789] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    C. Csáki, M. Martone, Y. Shirman, P. Tanedo and J. Terning, Dynamics of 3D SUSY Gauge Theories with Antisymmetric Matter, JHEP 08 (2014) 141 [arXiv:1406.6684] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Amariti, C. Csáki, M. Martone and N. R.-L. Lorier, From 4D to 3D chiral theories: Dressing the monopoles, Phys. Rev. D 93 (2016) 105027 [arXiv:1506.01017] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    J.F. Van Diejen and V.P. Spiridonov, Elliptic Selberg Integrals, Int. Math. Res. Not. 2001 (2001) 1083.MathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    J.F. Van Diejen and V.P. Spiridonov, Unit Circle Elliptic Beta Integrals, Ramanujan J. 10 (2005) 187.MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    I. Gahramanov and G. Vartanov, Extended global symmetries for 4D N = 1 SQCD theories, J. Phys. A 46 (2013) 285403 [arXiv:1303.1443] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  59. [59]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-Matter theories, Nucl. Phys. B 858 (2012) 84 [arXiv:1108.4963] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    P. Agarwal, A. Amariti and M. Siani, Refined Checks and Exact Dualities in Three Dimensions, JHEP 10 (2012) 178 [arXiv:1205.6798] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    B.R. Safdi, I.R. Klebanov and J. Lee, A Crack in the Conformal Window, JHEP 04 (2013) 165 [arXiv:1212.4502] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    J.H. Brodie, Duality in supersymmetric SU(N c) gauge theory with two adjoint chiral superfields, Nucl. Phys. B 478 (1996) 123 [hep-th/9605232] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    C. Hwang, H. Kim and J. Park, On 3d Seiberg-like Dualities with Two Adjoints, Fortsch. Phys. 66 (2018) 110064 [arXiv:1807.06198] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C. Callias, Index Theorems on Open Spaces, Commun. Math. Phys. 62 (1978) 213 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    E. Poppitz and M. Ünsal, Index theorem for topological excitations on R 3 × S 1 and Chern-Simons theory, JHEP 03 (2009) 027 [arXiv:0812.2085] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T.M.W. Nye and M.A. Singer, An L 2 index theorem for Dirac operators on S 1 × R 3, J. Funct. Anal. 177 (2000) 203 [math/0009144].
  68. [68]
    S. Golkar, Conformal windows of SP(2N) and SO(N) gauge theories from topological excitations on R 3 × S 1, JHEP 11 (2009) 076 [arXiv:0909.2838] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Humphreys, Introduction to Lie Algebras and Representation Theory, vol. 9, Springer-Verlag New York (1972) [ https://doi.org/10.1007/978-1-4612-6398-2].
  70. [70]
    E.J. Weinberg, Fundamental Monopoles and Multi-Monopole Solutions for Arbitrary Simple Gauge Groups, Nucl. Phys. B 167 (1980) 500 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    E.J. Weinberg, Fundamental Monopoles in Theories With Arbitrary Symmetry Breaking, Nucl. Phys. B 203 (1982) 445 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [INSPIRE].ADSMathSciNetGoogle Scholar
  73. [73]
    N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, in The mathematical beauty of physics: A memorial volume for Claude Itzykson. Proceedings, Conference, Saclay, France, June 5–7, 1996, pp. 333–366 (1996) [hep-th/9607163] [INSPIRE].
  74. [74]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.INFN Sezione di MilanoMilanoItaly
  2. 2.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  3. 3.INFN, Sezione di Milano-BicoccaMilanoItaly

Personalised recommendations