# Coulomb branches of star-shaped quivers

- 16 Downloads

## Abstract

We study the Coulomb branches of 3d \( \mathcal{N}=4 \) “star-shaped” quiver gauge theories and their deformation quantizations, by applying algebraic techniques that have been developed in the mathematics and physics literature over the last few years. The algebraic techniques supply an abelianization map, which embeds the Coulomb-branch chiral ring into a vastly simpler abelian algebra \( \mathcal{A} \). Relations among chiral-ring operators, and their deformation quantization, are canonically induced from the embedding into \( \mathcal{A} \). In the case of star-shaped quivers — whose Coulomb branches are related to Higgs branches of 4d \( \mathcal{N}=2 \) theories of Class \( \mathcal{S} \) — this allows us to systematically verify known relations, to generalize them, and to quantize them. In the quantized setting, we find several new families of relations.

## Keywords

Supersymmetric Gauge Theory Topological Field Theories Differential and Algebraic Geometry## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]N. Seiberg,
*IR dynamics on branes and space-time geometry*,*Phys. Lett.***B 384**(1996) 81 [hep-th/9606017] [INSPIRE]. - [2]N. Seiberg and E. Witten,
*Gauge dynamics and compactification to three-dimensions*, in*The mathematical beauty of physics: A memorial volume for Claude Itzykson. Proceedings, Conference, Saclay, France, June 5-7, 1996*, pp. 333-366, 1996, hep-th/9607163 [INSPIRE]. - [3]K.A. Intriligator and N. Seiberg,
*Mirror symmetry in three-dimensional gauge theories*,*Phys. Lett.***B 387**(1996) 513 [hep-th/9607207] [INSPIRE]. - [4]J. de Boer, K. Hori, H. Ooguri and Y. Oz,
*Mirror symmetry in three-dimensional gauge theories, quivers and D-branes*,*Nucl. Phys.***B 493**(1997) 101 [hep-th/9611063] [INSPIRE]. - [5]J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin,
*Mirror symmetry in three-dimensional theories,*SL(2, ℤ)*and D-brane moduli spaces*,*Nucl. Phys.***B 493**(1997) 148 [hep-th/9612131] [INSPIRE]. - [6]G. Chalmers and A. Hanany,
*Three-dimensional gauge theories and monopoles*,*Nucl. Phys.***B 489**(1997) 223 [hep-th/9608105] [INSPIRE]. - [7]A. Hanany and E. Witten,
*Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics*,*Nucl. Phys.***B 492**(1997) 152 [hep-th/9611230] [INSPIRE]. - [8]N. Dorey, V.V. Khoze, M.P. Mattis, D. Tong and S. Vandoren,
*Instantons, three-dimensional gauge theory and the Atiyah-Hitchin manifold*,*Nucl. Phys.***B 502**(1997) 59 [hep-th/9703228] [INSPIRE]. - [9]C. Fraser and D. Tong,
*Instantons, three-dimensional gauge theories and monopole moduli spaces*,*Phys. Rev.***D 58**(1998) 085001 [hep-th/9710098] [INSPIRE]. - [10]S. Cremonesi, A. Hanany and A. Zaffaroni,
*Monopole operators and Hilbert series of Coulomb branches of 3d*\( \mathcal{N}=4 \)*gauge theories*,*JHEP***01**(2014) 005 [arXiv:1309.2657] [INSPIRE]. - [11]D. Gaiotto, G.W. Moore and A. Neitzke,
*Four-dimensional wall-crossing via three-dimensional field theory*,*Commun. Math. Phys.***299**(2010) 163 [arXiv:0807.4723] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [12]M. Bullimore, T. Dimofte and D. Gaiotto,
*The Coulomb Branch of 3d*\( \mathcal{N}=4 \)*Theories*,*Commun. Math. Phys.***354**(2017) 671 [arXiv:1503.04817] [INSPIRE]. - [13]M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn and H.-C. Kim,
*Vortices and Vermas*,*Adv. Theor. Math. Phys.***22**(2018) 803 [arXiv:1609.04406] [INSPIRE].CrossRefGoogle Scholar - [14]
- [15]H. Nakajima,
*Towards a mathematical definition of Coulomb branches of*3*-dimensional*\( \mathcal{N}=4 \)*gauge theories, I*,*Adv. Theor. Math. Phys.***20**(2016) 595 [arXiv:1503.03676] [INSPIRE]. - [16]A. Braverman, M. Finkelberg and H. Nakajima,
*Towards a mathematical definition of Coulomb branches of*3*-dimensional*\( \mathcal{N}=4 \)*gauge theories, II*, arXiv:1601.03586 [INSPIRE]. - [17]A. Braverman, M. Finkelberg and H. Nakajima,
*Coulomb branches of 3d*\( \mathcal{N}=4 \)*quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster and Alex Weekes)*, arXiv:1604.03625 [INSPIRE]. - [18]B. Webster,
*Koszul duality between Higgs and Coulomb categories*\( \mathcal{O} \), arXiv:1611.06541. - [19]
- [20]G.W. Moore and Y. Tachikawa,
*On 2d TQFTs whose values are holomorphic symplectic varieties*,*Proc. Symp. Pure Math.***85**(2012) 191 [arXiv:1106.5698] [INSPIRE].MathSciNetCrossRefGoogle Scholar - [21]F. Benini, Y. Tachikawa and B. Wecht,
*Sicilian gauge theories and N*= 1*dualities*,*JHEP***01**(2010) 088 [arXiv:0909.1327] [INSPIRE]. - [22]A. Gadde, K. Maruyoshi, Y. Tachikawa and W. Yan,
*New N*= 1*Dualities*,*JHEP***06**(2013) 056 [arXiv:1303.0836] [INSPIRE]. - [23]K. Yonekura,
*Supersymmetric gauge theory,*(2, 0)*theory and twisted 5d Super-Yang-Mills*,*JHEP***01**(2014) 142 [arXiv:1310.7943] [INSPIRE]. - [24]K. Maruyoshi, Y. Tachikawa, W. Yan and K. Yonekura,
*N*= 1*dynamics with T*_{N}*theory*,*JHEP***10**(2013) 010 [arXiv:1305.5250] [INSPIRE]. - [25]H. Hayashi, Y. Tachikawa and K. Yonekura,
*Mass-deformed T*_{N}*as a linear quiver*,*JHEP***02**(2015) 089 [arXiv:1410.6868] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [26]M. Lemos and W. Peelaers,
*Chiral Algebras for Trinion Theories*,*JHEP***02**(2015) 113 [arXiv:1411.3252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [27]Y. Tachikawa,
*A review of the T*_{N}*theory and its cousins*,*PTEP***2015**(2015) 11B102 [arXiv:1504.01481] [INSPIRE]. - [28]V. Ginzburg and D. Kazhdan,
*Construction of symplectic varieties arising in ‘sicilian theories’*, unpublished.Google Scholar - [29]A. Braverman, M. Finkelberg and H. Nakajima,
*Ring objects in the equivariant derived Satake category arising from Coulomb branches (with an appendix by Gus Lonergan)*, arXiv:1706.02112 [INSPIRE]. - [30]
- [31]F. Benini, Y. Tachikawa and D. Xie,
*Mirrors of 3d Sicilian theories*,*JHEP***09**(2010) 063 [arXiv:1007.0992] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [32]D. Gaiotto, G.W. Moore and A. Neitzke,
*Wall-crossing, Hitchin Systems and the WKB Approximation*, arXiv:0907.3987 [INSPIRE]. - [33]J.A. Minahan and D. Nemeschansky,
*An N*= 2*superconformal fixed point with E*_{6}*global symmetry*,*Nucl. Phys.***B 482**(1996) 142 [hep-th/9608047] [INSPIRE]. - [34]D. Gaiotto, A. Neitzke and Y. Tachikawa,
*Argyres-Seiberg duality and the Higgs branch*,*Commun. Math. Phys.***294**(2010) 389 [arXiv:0810.4541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [35]S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni,
*Coulomb branch Hilbert series and Three Dimensional Sicilian Theories*,*JHEP***09**(2014) 185 [arXiv:1403.2384] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [36]M. Blau and G. Thompson,
*Aspects of N(T)*≥*two topological gauge theories and D-branes*,*Nucl. Phys.***B 492**(1997) 545 [hep-th/9612143] [INSPIRE]. - [37]L. Rozansky and E. Witten,
*HyperKähler geometry and invariants of three manifolds*,*Selecta Math.***3**(1997) 401 [hep-th/9612216] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [38]C. Beem, D. Ben-Zvi, M. Bullimore, T. Dimofte and A. Neitzke,
*Secondary products in supersymmetric field theory*, arXiv:1809.00009 [INSPIRE]. - [39]N.A. Nekrasov,
*Seiberg-Witten prepotential from instanton counting*,*Adv. Theor. Math. Phys.***7**(2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [40]
- [41]C. Beem, W. Peelaers and L. Rastelli,
*Deformation quantization and superconformal symmetry in three dimensions*,*Commun. Math. Phys.***354**(2017) 345 [arXiv:1601.05378] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [42]M. Dedushenko, S.S. Pufu and R. Yacoby,
*A one-dimensional theory for Higgs branch operators*,*JHEP***03**(2018) 138 [arXiv:1610.00740] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [43]S. Gukov and E. Witten,
*Gauge Theory, Ramification, And The Geometric Langlands Program*, hep-th/0612073 [INSPIRE]. - [44]T. Dimofte and S. Gukov,
*Refined, Motivic and Quantum*,*Lett. Math. Phys.***91**(2010) 1 [arXiv:0904.1420] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [45]N.A. Nekrasov and S.L. Shatashvili,
*Quantization of Integrable Systems and Four Dimensional Gauge Theories*, in*Proceedings, 16th International Congress on Mathematical Physics (ICMP09): Prague, Czech Republic, August 3-8, 2009*, pp. 265-289, arXiv:0908.4052 [INSPIRE]. - [46]D. Gaiotto, G.W. Moore and A. Neitzke,
*Framed BPS States*,*Adv. Theor. Math. Phys.***17**(2013) 241 [arXiv:1006.0146] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [47]N. Drukker, J. Gomis, T. Okuda and J. Teschner,
*Gauge Theory Loop Operators and Liouville Theory*,*JHEP***02**(2010) 057 [arXiv:0909.1105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [48]T. Hikita,
*An algebro-geometric realization of the cohomology ring of Hilbert scheme of points in the affine plane*, arXiv:1501.02430. - [49]J. Kamnitzer, P. Tingley, B. Webster, A. Weekes and O. Yacobi,
*Highest weights for truncated shifted Yangians and product monomial crystals*, arXiv:1511.09131. - [50]T. Braden, A. Licata, N. Proudfoot and B. Webster,
*Quantizations of conical symplectic resolutions II: category*\( \mathcal{O} \)*and symplectic duality*, arXiv:1407.0964 [INSPIRE]. - [51]M. Bullimore, T. Dimofte, D. Gaiotto and J. Hilburn,
*Boundaries, Mirror Symmetry and Symplectic Duality in 3d*\( \mathcal{N}=4 \)*Gauge Theory*,*JHEP***10**(2016) 108 [arXiv:1603.08382] [INSPIRE]. - [52]P.C. Argyres and N. Seiberg,
*S-duality in N*= 2*supersymmetric gauge theories*,*JHEP***12**(2007) 088 [arXiv:0711.0054] [INSPIRE]. - [53]Y. Tachikawa,
*Six-dimensional D*_{N}*theory and four-dimensional SO-USp quivers*,*JHEP***07**(2009) 067 [arXiv:0905.4074] [INSPIRE]. - [54]O. Chacaltana and J. Distler,
*Tinkertoys for Gaiotto Duality*,*JHEP***11**(2010) 099 [arXiv:1008.5203] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [55]O. Chacaltana and J. Distler,
*Tinkertoys for the D*_{N}*series*,*JHEP***02**(2013) 110 [arXiv:1106.5410] [INSPIRE]. - [56]C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees,
*Infinite Chiral Symmetry in Four Dimensions*,*Commun. Math. Phys.***336**(2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [57]C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees,
*Chiral algebras of class S*,*JHEP***05**(2015) 020 [arXiv:1408.6522] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [58]N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček,
*HyperKähler Metrics and Supersymmetry*,*Commun. Math. Phys.***108**(1987) 535 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [59]N. Seiberg and E. Witten,
*Electric-magnetic duality, monopole condensation and confinement in N*= 2*supersymmetric Yang-Mills theory*,*Nucl. Phys.***B 426**(1994) 19 [*Erratum ibid.***B 430**(1994) 485] [hep-th/9407087] [INSPIRE]. - [60]N. Seiberg and E. Witten,
*Monopoles, duality and chiral symmetry breaking in N*= 2*supersymmetric QCD*,*Nucl. Phys.***B 431**(1994) 484 [hep-th/9408099] [INSPIRE]. - [61]
- [62]V. Borokhov, A. Kapustin and X.-k. Wu,
*Monopole operators and mirror symmetry in three-dimensions*,*JHEP***12**(2002) 044 [hep-th/0207074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [63]V. Pestun,
*Localization of gauge theory on a four-sphere and supersymmetric Wilson loops*,*Commun. Math. Phys.***313**(2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [64]J. Gomis, T. Okuda and V. Pestun,
*Exact Results for ’t Hooft Loops in Gauge Theories on*S^{4},*JHEP***05**(2012) 141 [arXiv:1105.2568] [INSPIRE]. - [65]Y. Ito, T. Okuda and M. Taki,
*Line operators on*S^{1}× ℝ^{3}*and quantization of the Hitchin moduli space*,*JHEP***04**(2012) 010 [*Erratum ibid.***03**(2016) 085] [arXiv:1111.4221] [INSPIRE]. - [66]T. Dimofte, N. Garner, M. Geracie and J. Hilburn, work in progress.Google Scholar
- [67]R. Bezrukavnikov, M. Finkelberg and I. Mirković,
*Equivariant homology and K-theory of affine Grassmannians and Toda lattices*,*Compos. Math.***141**(2005) 746.Google Scholar - [68]V. Ginzburg,
*Nil Hecke algebras and Whittaker D-modules*, arXiv:1706.06751. - [69]J. Kamnitzer, B. Webster, A. Weekes and O. Yacobi,
*Yangians and quantizations of slices in the affine Grassmannian*,*Alg. Numb. Theor.***8**(2014) 857 [arXiv:1209.0349].MathSciNetCrossRefzbMATHGoogle Scholar - [70]D. Gaiotto and E. Witten,
*Supersymmetric Boundary Conditions in N*= 4*Super Yang-Mills Theory*,*J. Statist. Phys.***135**(2009) 789 [arXiv:0804.2902] [INSPIRE]. - [71]D. Gaiotto and E. Witten,
*S-duality of Boundary Conditions In N*= 4*Super Yang-Mills Theory*,*Adv. Theor. Math. Phys.***13**(2009) 721 [arXiv:0807.3720] [INSPIRE]. - [72]A. Hanany and A. Zajac,
*Discrete Gauging in Coulomb branches of Three Dimensional*\( \mathcal{N}=4 \)*Supersymmetric Gauge Theories*,*JHEP***08**(2018) 158 [arXiv:1807.03221] [INSPIRE]. - [73]A. Hanany and N. Mekareeya,
*Tri-vertices and*SU(2)*’s*,*JHEP***02**(2011) 069 [arXiv:1012.2119] [INSPIRE]. - [74]A. Kapustin and E. Witten,
*Electric-Magnetic Duality And The Geometric Langlands Program*,*Commun. Num. Theor. Phys.***1**(2007) 1 [hep-th/0604151] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [75]A. Kapustin and N. Saulina,
*The algebra of Wilson-’t Hooft operators*,*Nucl. Phys.***B 814**(2009) 327 [arXiv:0710.2097] [INSPIRE]. - [76]E. Witten,
*Supersymmetry and Morse theory*,*J. Diff. Geom.***17**(1982) 661 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [77]M. Atiyah and N. Hitchin,
*The geometry and dynamics of magnetic monopoles*, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, U.S.A., (1988), [ https://doi.org/10.1515/9781400859306].