Prospects for a measurement of the W boson mass in the all-jets final state at hadron colliders

  • Marat Freytsis
  • Philip Harris
  • Andreas HinzmannEmail author
  • Ian Moult
  • Nhan Tran
  • Caterina Vernieri
Open Access
Regular Article - Experimental Physics


Precise measurements of the mass of the W boson are important to test the overall consistency of the Standard Model of particle physics. The current best measurements of the W boson mass come from single production measurements at hadron colliders in its decay mode to a lepton (electron or muon) and a neutrino and pair production of W bosons at lepton colliders, where both the leptonic and hadronic decay modes of the W boson have been considered. In this study, prospects for a measurement of the W boson mass in the all-jet final state at hadron colliders are presented. The feasibility of this measurement takes advantage of numerous recent developments in the field of jet substructure. Compared to other methods for measuring the W mass, a measurement in the all-jets final state would be complementary in methodology and have systematic uncertainties orthogonal to previous measurements. We have estimated the main experimental and theoretical uncertainties affecting a measurement in the all-jet final state. With new trigger strategies, a statistical uncertainty for the measurement of the mass difference between the Z and W bosons of 30 MeV could be reached with HL-LHC data corresponding to 3000 fb−1 of integrated luminosity. However, in order to reach that precision, the current understanding of non-perturbative contributions to the invariant mass of W\( q\overline{q}^{\prime } \) and Z\( b\overline{b} \) jets will need to be refined. Similar strategies will also allow the reach for generic boosted resonances searches in hadronic channels to be extended.


Jet substructure Electroweak interaction Hadron-Hadron scattering (experiments) Jet physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.L. Glashow, Partial-symmetries of weak interactions, Nucl. Phys. 22 (1961) 579 [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    A. Salam and J.C. Ward, Electromagnetic and weak interactions, Phys. Lett. 13 (1964) 168 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W-boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].
  5. [5]
    A. Sirlin, Radiative corrections in the SU(2)L × U(1) theory: A simple renormalization framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].ADSGoogle Scholar
  6. [6]
    Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  7. [7]
    ATLAS collaboration, Measurement of the W-boson mass in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 110 [Erratum ibid. C 78 (2018) 898] [arXiv:1701.07240] [INSPIRE].
  8. [8]
    CDF and D0 collaborations, Combination of CDF and D0 W-Boson mass measurements, Phys. Rev. D 88 (2013) 052018 [arXiv:1307.7627] [INSPIRE].
  9. [9]
    CDF collaboration, Precise Measurement of the W-Boson Mass with the CDF II Detector, Phys. Rev. Lett. 108 (2012) 151803 [arXiv:1203.0275] [INSPIRE].
  10. [10]
    D0 collaboration, Measurement of the W Boson Mass with the D0 Detector, Phys. Rev. Lett. 108 (2012) 151804 [arXiv:1203.0293] [INSPIRE].
  11. [11]
    UA2 collaboration, An improved determination of the ratio of W and Z masses at the CERN \( \overline{p}p \) collider, Phys. Lett. B 276 (1992) 354 [INSPIRE].
  12. [12]
    UA1 collaboration, Intermediate-Vector Boson Properties at the CERN Super Proton Synchrotron Collider, Europhys. Lett. 1 (1986) 327 [INSPIRE].
  13. [13]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  14. [14]
    DELPHI collaboration, Measurement of the mass and width of the W boson in e + e collisions at \( \sqrt{s} \) = 161209 GeV, Eur. Phys. J. C 55 (2008) 1 [arXiv:0803.2534] [INSPIRE].
  15. [15]
    ALEPH collaboration, Measurement of the W boson mass and width in e + e collisions at LEP, Eur. Phys. J. C 47 (2006) 309 [hep-ex/0605011] [INSPIRE].
  16. [16]
    L3 collaboration, Measurement of the mass and the width of the W boson at LEP, Eur. Phys. J. C 45 (2006) 569 [hep-ex/0511049] [INSPIRE].
  17. [17]
    OPAL collaboration, Measurement of the mass and width of the W boson, Eur. Phys. J. C 45 (2006) 307 [hep-ex/0508060] [INSPIRE].
  18. [18]
    C.M. Carloni Calame et al., Precision measurement of the W-boson mass: Theoretical contributions and uncertainties, Phys. Rev. D 96 (2017) 093005 [arXiv:1612.02841] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Bozzi, L. Citelli and A. Vicini, Parton density function uncertainties on the W boson mass measurement from the lepton transverse momentum distribution, Phys. Rev. D 91 (2015) 113005 [arXiv:1501.05587] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet Substructure as a New Higgs Search Channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.J. Larkoski, I. Moult and D. Neill, Power counting to better jet observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.J. Larkoski, I. Moult and D. Neill, Analytic boosted boson discrimination, JHEP 05 (2016) 117 [arXiv:1507.03018] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I. Moult, L. Necib and J. Thaler, New angles on energy correlation functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].
  28. [28]
    A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, arXiv:1709.04464 [INSPIRE].
  29. [29]
    L. Asquith et al., Jet Substructure at the Large Hadron Collider: Experimental Review, arXiv:1803.06991 [INSPIRE].
  30. [30]
    ATLAS collaboration, Performance of jet substructure techniques in early \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2015-035.
  31. [31]
    ATLAS collaboration, Identification of boosted, hadronically decaying W bosons and comparisons with ATLAS data taken at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 154 [arXiv:1510.05821] [INSPIRE].
  32. [32]
    CMS collaboration, Jet algorithms performance in 13 TeV data, CMS-PAS-JME-16-003.
  33. [33]
    CMS collaboration, Identification techniques for highly boosted W bosons that decay into hadrons, JHEP 12 (2014) 017 [arXiv:1410.4227] [INSPIRE].
  34. [34]
    CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 01 (2018) 097 [arXiv:1710.00159] [INSPIRE].
  35. [35]
    CMS collaboration, Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 119 (2017) 111802 [arXiv:1705.10532] [INSPIRE].
  36. [36]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  37. [37]
    ATLAS collaboration, Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 788 (2019) 316 [arXiv:1801.08769] [INSPIRE].
  38. [38]
    CMS collaboration, IncLusive Search for a Highly Boosted Higgs Boson Decaying to a Bottom Quark-Antiquark Pair, Phys. Rev. Lett. 120 (2018) 071802 [arXiv:1709.05543] [INSPIRE].
  39. [39]
    G. Apollinari et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1, CERN-2017-007-M [INSPIRE].
  40. [40]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  43. [43]
    P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
  44. [44]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  45. [45]
    P. Richardson and A. Wilcock, Monte Carlo simulation of hard radiation in decays in beyond the standard model physics in HERWIG++, Eur. Phys. J. C 74 (2014) 2713 [arXiv:1303.4563] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Bellm et al., HERWIG++ 2.7 Release Note, arXiv:1310.6877 [INSPIRE].
  47. [47]
    J.M. Lindert et al., Precise predictions for V + jets dark matter backgrounds, Eur. Phys. J. C 77 (2017) 829 [arXiv:1705.04664] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    CMS collaboration, Particle-flow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE].
  49. [49]
    ATLAS collaboration, Jet reconstruction and performance using particle flow with the ATLAS Detector, Eur. Phys. J. C 77 (2017) 466 [arXiv:1703.10485] [INSPIRE].
  50. [50]
    CMS collaboration, V Tagging Observables and Correlations, CMS-PAS-JME-14-002.
  51. [51]
    CMS collaboration, The Phase-2 Upgrade of the CMS Tracker, CERN-LHCC-2017-009.
  52. [52]
    CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [INSPIRE].
  53. [53]
    CMS collaboration, Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 03 (2017) 162 [arXiv:1612.09159] [INSPIRE].
  54. [54]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    F.A. Dreyer, L. Necib, G. Soyez and J. Thaler, Recursive Soft Drop, JHEP 06 (2018) 093 [arXiv:1804.03657] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: Pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. Dolen, P. Harris, S. Marzani, S. Rappoccio and N. Tran, Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure, JHEP 05 (2016) 156 [arXiv:1603.00027] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    CMS collaboration, Search for massive resonances decaying into WW, WZ, ZZ, qW and qZ with dijet final states at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 97 (2018) 072006 [arXiv:1708.05379] [INSPIRE].
  61. [61]
    ATLAS collaboration, Performance of the ATLAS Trigger System in 2015, Eur. Phys. J. C 77 (2017) 317 [arXiv:1611.09661] [INSPIRE].
  62. [62]
    CMS collaboration, Identification of double-b quark jets in boosted event topologies, CMS-PAS-BTV-15-002.
  63. [63]
    ATLAS collaboration, Boosted Higgs (→ \( b\overline{b} \)) Boson Identification with the ATLAS Detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-039.
  64. [64]
    CMS collaboration, Search for Narrow Resonances in Dijet Final States at \( \sqrt{s}=8 \) TeV with the Novel Cms Technique of Data Scouting, Phys. Rev. Lett. 117 (2016) 031802 [arXiv:1604.08907] [INSPIRE].
  65. [65]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  66. [66]
    S. Benson, V.V. Gligorov, M.A. Vesterinen and J.M. Williams, The LHCb Turbo Stream, J. Phys. Conf. Ser. 664 (2015) 082004 [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    CMS collaboration, The Phase-2 Upgrade of the CMS L1 Trigger Interim Technical Design Report, CERN-LHCC-2017-013.
  68. [68]
    CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST 12 P02014 [arXiv:1607.03663] [INSPIRE].
  69. [69]
    ATLAS collaboration, A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector, Eur. Phys. J. C 77 (2017) 26 [arXiv:1607.08842] [INSPIRE].
  70. [70]
    D. Bertolini, P. Harris, M. Low and N. Tran, Pileup per particle identification, JHEP 10 (2014) 059 [arXiv:1407.6013] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    E. Todesco and F. Zimmermann eds., Proceedings, EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider (HE-LHC10), CERN-2011-003.Google Scholar
  72. [72]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    DELPHI collaboration, A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z Pole, Eur. Phys. J. C 71 (2011) 1557 [arXiv:1102.4748] [INSPIRE].
  74. [74]
    A.J. Larkoski, I. Moult and D. Neill, Analytic Boosted Boson Discrimination at the Large Hadron Collider, arXiv:1708.06760 [INSPIRE].
  75. [75]
    A.J. Larkoski, I. Moult and D. Neill, Factorization and resummation for groomed multi-prong jet shapes, JHEP 02 (2018) 144 [arXiv:1710.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    I. Moult, B. Nachman and D. Neill, Convolved substructure: analytically decorrelating jet substructure observables, JHEP 05 (2018) 002 [arXiv:1710.06859] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a Short Distance Top Mass with Light Grooming, arXiv:1708.02586 [INSPIRE].
  78. [78]
    J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, in 10th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2017), Les Houches, France, June 5–23, 2017 (2018) [arXiv:1803.07977].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute of Theoretical ScienceUniversity of OregonEugeneU.S.A.
  2. 2.Massachusetts Institute of TechnologyCambridgeU.S.A.
  3. 3.University of HamburgHamburgGermany
  4. 4.Berkeley Center for Theoretical PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  5. 5.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.
  6. 6.Fermi National Accelerator LaboratoryBataviaU.S.A.

Personalised recommendations