Instanton liquid properties from lattice QCD

Abstract

We examined the instanton contribution to the QCD configurations generated from lattice QCD for N F = 0, N F = 2 + 1 and N F = 2 + 1 + 1 dynamical quark flavors from two different and complementary approaches. First via the use of Gradient flow, we computed instanton liquid properties using an algorithm to localize instantons in the gauge field configurations and studied their evolution with flow time. Then, the analysis of the running at low momenta of gluon Green’s functions serves as an independent confirmation of the instanton density which can also be derived without the use of the Gradient flow.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    T. Schäfer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451] [INSPIRE].

  2. [2]

    D. Diakonov, Chiral symmetry breaking by instantons, Proc. Int. Sch. Phys. Fermi 130 (1996) 397 [hep-ph/9602375] [INSPIRE].

  3. [3]

    A.M. Polyakov, Quark Confinement and Topology of Gauge Groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [INSPIRE].

  5. [5]

    C. Bonati and M. D’Elia, Comparison of the gradient flow with cooling in SU(3) pure gauge theory, Phys. Rev. D 89 (2014) 105005 [arXiv:1401.2441] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    C. Alexandrou, A. Athenodorou and K. Jansen, Topological charge using cooling and the gradient flow, Phys. Rev. D 92 (2015) 125014 [arXiv:1509.04259] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    K. Cichy, E. Garcia-Ramos and K. Jansen, Short distance singularities and automatic O(a) improvement: the cases of the chiral condensate and the topological susceptibility, JHEP 04 (2015) 048 [arXiv:1412.0456] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    C. Alexandrou et al., Comparison of topological charge definitions in Lattice QCD, arXiv:1708.00696 [INSPIRE].

  9. [9]

    M. Teper, Instantons in the Quantized SU(2) Vacuum: A Lattice Monte Carlo Investigation, Phys. Lett. B 162 (1985) 357 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    C. Michael and P.S. Spencer, Cooling and the SU(2) instanton vacuum, Phys. Rev. D 52 (1995) 4691 [hep-lat/9503018] [INSPIRE].

  11. [11]

    P.J. Moran and D.B. Leinweber, Impact of Dynamical Fermions on QCD Vacuum Structure, Phys. Rev. D 78 (2008) 054506 [arXiv:0801.2016] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    D. Trewartha, W. Kamleh, D. Leinweber and D.S. Roberts, Quark Propagation in the Instantons of Lattice QCD, Phys. Rev. D 88 (2013) 034501 [arXiv:1306.3283] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    H. Suzuki, Perturbative derivation of exact superpotential for meson fields from matrix theories with one flavor, JHEP 03 (2003) 005 [hep-th/0211052] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    A. Cucchieri and T. Mendes, What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS(LATTICE 2007)297 [arXiv:0710.0412] [INSPIRE].

  15. [15]

    A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang-Mills theories, Phys. Rev. Lett. 100 (2008) 241601 [arXiv:0712.3517] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    M. Frasca, Infrared Gluon and Ghost Propagators, Phys. Lett. B 670 (2008) 73 [arXiv:0709.2042] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    P. Boucaud, J.-P. Leroy, A.L. Yaouanc, J. Micheli, O. Pène and J. Rodríguez-Quintero, IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation, JHEP 06 (2008) 012 [arXiv:0801.2721] [INSPIRE].

  18. [18]

    P. Boucaud, J.P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène and J. Rodríguez-Quintero, On the IR behaviour of the Landau-gauge ghost propagator, JHEP 06 (2008) 099 [arXiv:0803.2161] [INSPIRE].

  19. [19]

    A.C. Aguilar, D. Binosi and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations, Phys. Rev. D 78 (2008) 025010 [arXiv:0802.1870] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel and H. Verschelde, A refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results, Phys. Rev. D 78 (2008) 065047 [arXiv:0806.4348] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676 (2009) 69 [arXiv:0901.0736] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    O. Oliveira and P. Bicudo, Running Gluon Mass from Landau Gauge Lattice QCD Propagator, J. Phys. G 38 (2011) 045003 [arXiv:1002.4151] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M. Tissier and N. Wschebor, Infrared propagators of Yang-Mills theory from perturbation theory, Phys. Rev. D 82 (2010) 101701 [arXiv:1004.1607] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    A.C. Aguilar, D. Binosi and J. Papavassiliou, Unquenching the gluon propagator with Schwinger-Dyson equations, Phys. Rev. D 86 (2012) 014032 [arXiv:1204.3868] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    O. Oliveira and P.J. Silva, The lattice Landau gauge gluon propagator: lattice spacing and volume dependence, Phys. Rev. D 86 (2012) 114513 [arXiv:1207.3029] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti and J. Rodríguez-Quintero, Quark flavour effects on gluon and ghost propagators, Phys. Rev. D 86 (2012) 074512 [arXiv:1208.0795] [INSPIRE].

  27. [27]

    M. Peláez, M. Tissier and N. Wschebor, Two-point correlation functions of QCD in the Landau gauge, Phys. Rev. D 90 (2014) 065031 [arXiv:1407.2005] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    F. Gao, S.-X. Qin, C.D. Roberts and J. Rodríguez-Quintero, Locating the Gribov horizon, arXiv:1706.04681 [INSPIRE].

  29. [29]

    A. Athenodorou, P. Boucaud, F. De Soto, J. Rodríguez-Quintero and S. Zafeiropoulos, Gluon Green functions free of Quantum fluctuations, Phys. Lett. B 760 (2016) 354 [arXiv:1604.08887] [INSPIRE].

  30. [30]

    P. Boucaud et al., Modified instanton profile effects from lattice Green functions, Phys. Rev. D 70 (2004) 114503 [hep-ph/0312332] [INSPIRE].

  31. [31]

    P. Boucaud, F. De Soto, A. Le Yaouanc and J. Rodríguez-Quintero, Are the low-momentum gluon correlations semiclassically determined?, JHEP 03 (2005) 046 [hep-ph/0410347] [INSPIRE].

  32. [32]

    E.V. Shuryak, Toward the Quantitative Theory of the Topological Effects in Gauge Field Theories. 2. The SU(2) Gluodynamics, Nucl. Phys. B 302 (1988) 574 [INSPIRE].

  33. [33]

    D. Diakonov and V. Yu. Petrov, Instanton Based Vacuum from Feynman Variational Principle, Nucl. Phys. B 245 (1984) 259 [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Yu. S. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    M. Atiyah, Geometry of Yang-Mills fields, Edizioni della Normale, (1979).

  36. [36]

    P. Boucaud et al., The strong coupling constant at small momentum as an instanton detector, JHEP 04 (2003) 005 [hep-ph/0212192] [INSPIRE].

  37. [37]

    P. Boucaud, J.P. Leroy, J. Micheli, O. Pène and C. Roiesnel, Lattice calculation of α s in momentum scheme, JHEP 10 (1998) 017 [hep-ph/9810322] [INSPIRE].

  38. [38]

    M. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [Erratum ibid. 03 (2014) 092] [arXiv:1006.4518] [INSPIRE].

  40. [40]

    P. Boucaud, F. De Soto, J. Rodríguez-Quintero and S. Zafeiropoulos, Refining the detection of the zero crossing for the three-gluon vertex in symmetric and asymmetric momentum subtraction schemes, Phys. Rev. D 95 (2017) 114503 [arXiv:1701.07390] [INSPIRE].

  41. [41]

    RBC and UKQCD collaborations, T. Blum et al., Domain wall QCD with physical quark masses, Phys. Rev. D 93 (2016) 074505 [arXiv:1411.7017] [INSPIRE].

  42. [42]

    R. Baron et al., Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks, JHEP 06 (2010) 111 [arXiv:1004.5284] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  43. [43]

    UKQCD collaboration, D.A. Smith and M.J. Teper, Topological structure of the SU(3) vacuum, Phys. Rev. D 58 (1998) 014505 [hep-lat/9801008] [INSPIRE].

  44. [44]

    M. Garcia Perez, A. Gonzalez-Arroyo, J.R. Snippe and P. van Baal, Instantons from over-improved cooling, Nucl. Phys. B 413 (1994) 535 [hep-lat/9309009] [INSPIRE].

  45. [45]

    J.W. Negele, Instantons, the QCD vacuum and hadronic physics, Nucl. Phys. Proc. Suppl. 73 (1999) 92 [hep-lat/9810053] [INSPIRE].

  46. [46]

    UKQCD collaboration, A. Hart and M. Teper, The topological susceptibility and f(pi) from lattice QCD, Phys. Lett. B 523 (2001) 280 [hep-lat/0108006] [INSPIRE].

  47. [47]

    M. Creutz, Anomalies, gauge field topology and the lattice, Annals Phys. 326 (2011) 911 [arXiv:1007.5502] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    M. Lüscher, Weyl fermions on the lattice and the nonAbelian gauge anomaly, Nucl. Phys. B 568 (2000) 162 [hep-lat/9904009] [INSPIRE].

  49. [49]

    M. Creutz, Positivity and topology in lattice gauge theory, Phys. Rev. D 70 (2004) 091501 [hep-lat/0409017] [INSPIRE].

  50. [50]

    P. Boucaud et al., O.P.E. and power corrections to the QCD coupling constant, Nucl. Phys. Proc. Suppl. 114 (2003) 117 [hep-ph/0210098] [INSPIRE].

  51. [51]

    A.C. Aguilar, D. Binosi, D. Ibañez and J. Papavassiliou, Effects of divergent ghost loops on the Green’s functions of QCD, Phys. Rev. D 89 (2014) 085008 [arXiv:1312.1212] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    M. Tissier and N. Wschebor, An Infrared Safe perturbative approach to Yang-Mills correlators, Phys. Rev. D 84 (2011) 045018 [arXiv:1105.2475] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    M. Peláez, M. Tissier and N. Wschebor, Three-point correlation functions in Yang-Mills theory, Phys. Rev. D 88 (2013) 125003 [arXiv:1310.2594] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    A. Blum, M.Q. Huber, M. Mitter and L. von Smekal, Gluonic three-point correlations in pure Landau gauge QCD, Phys. Rev. D 89 (2014) 061703 [arXiv:1401.0713] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    G. Eichmann, R. Williams, R. Alkofer and M. Vujinovic, Three-gluon vertex in Landau gauge, Phys. Rev. D 89 (2014) 105014 [arXiv:1402.1365] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    A.K. Cyrol, L. Fister, M. Mitter, J.M. Pawlowski and N. Strodthoff, Landau gauge Yang-Mills correlation functions, Phys. Rev. D 94 (2016) 054005 [arXiv:1605.01856] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    A. Athenodorou et al., On the zero crossing of the three-gluon vertex, Phys. Lett. B 761 (2016) 444 [arXiv:1607.01278] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    A.G. Duarte, O. Oliveira and P.J. Silva, Further Evidence For Zero Crossing On The Three Gluon Vertex, Phys. Rev. D 94 (2016) 074502 [arXiv:1607.03831] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    M. Creutz, Fun with Dirac eigenvalues, in Sense of Beauty in Physics: Miniconference in Honor of Adriano Di Giacomo on his 70th Birthday Pisa, Italy, January 26-27, 2006, hep-lat/0511052 [INSPIRE].

  60. [60]

    G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].

  61. [61]

    P. Boucaud, F. De Soto, J. Rodríguez-Quintero and S. Zafeiropoulos, Comment on “Lattice gluon and ghost propagators and the strong coupling in pure SU(3) Yang-Mills theory: Finite lattice spacing and volume effects”, Phys. Rev. D 96 (2017) 098501 [arXiv:1704.02053] [INSPIRE].

  62. [62]

    A.G. Duarte, O. Oliveira and P.J. Silva, Reply to “Comment on ‘Lattice gluon and ghost propagators and the strong coupling in pure SU(3) Yang-Mills theory: Finite lattice spacing and volume effects’”, Phys. Rev. D 96 (2017) 098502 [arXiv:1704.02864] [INSPIRE].

  63. [63]

    D. Binosi, C.D. Roberts and J. Rodríguez-Quintero, Scale-setting, flavor dependence and chiral symmetry restoration, Phys. Rev. D 95 (2017) 114009 [arXiv:1611.03523] [INSPIRE].

  64. [64]

    P. Boucaud et al., Ghost-gluon running coupling, power corrections and the determination of Lambda(MS-bar), Phys. Rev. D 79 (2009) 014508 [arXiv:0811.2059] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    B. Blossier et al., The strong running coupling at τ and Z 0 mass scales from lattice QCD, Phys. Rev. Lett. 108 (2012) 262002 [arXiv:1201.5770] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. De Soto.

Additional information

ArXiv ePrint: 1801.10155

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Athenodorou, A., Boucaud, P., De Soto, F. et al. Instanton liquid properties from lattice QCD. J. High Energ. Phys. 2018, 140 (2018). https://doi.org/10.1007/JHEP02(2018)140

Download citation

Keywords

  • Lattice QCD
  • Solitons Monopoles and Instantons
  • Confinement