Advertisement

Journal of High Energy Physics

, 2018:124 | Cite as

Runaway relaxion monodromy

  • Liam McAllister
  • Pedro Schwaller
  • Geraldine Servant
  • John Stout
  • Alexander Westphal
Open Access
Regular Article - Theoretical Physics

Abstract

We examine the relaxion mechanism in string theory. An essential feature is that an axion winds over N ≫ 1 fundamental periods. In string theory realizations via axion monodromy, this winding number corresponds to a physical charge carried by branes or fluxes. We show that — in the context of NS5-brane axion monodromy — this charge backreacts on the compact space, ruining the structure of the relaxion action. In particular, the barriers generated by strong gauge dynamics have height ∝ eN , so the relaxion does not stop when the Higgs acquires a vev. Backreaction of monodromy charge can therefore spoil the relaxion mechanism. We comment on the limitations of technical naturalness arguments in this context.

Keywords

Discrete Symmetries Effective Field Theories Flux compactifications 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP 12 (2016) 101 [arXiv:1607.01786] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.P. Patil and P. Schwaller, Relaxing the electroweak scale: the role of broken dS symmetry, JHEP 02 (2016) 077 [arXiv:1507.08649] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Di Chiara et al., Relaxion cosmology and the price of fine-tuning, Phys. Rev. D 93 (2016) 103527 [arXiv:1511.02858] [INSPIRE].
  5. [5]
    T. Kobayashi, O. Seto, T. Shimomura and Y. Urakawa, Relaxion window, Mod. Phys. Lett. A 32 (2017) 1750142 [arXiv:1605.06908] [INSPIRE].
  6. [6]
    D. Baumann and L. McAllister, Inflation and string theory, Cambridge University Press, Cambridge U.K. (2015).Google Scholar
  7. [7]
    R.S. Gupta, Z. Komargodski, G. Perez and L. Ubaldi, Is the relaxion an axion?, JHEP 02 (2016) 166 [arXiv:1509.00047] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion monodromy and the weak gravity conjecture, JHEP 04 (2016) 020 [arXiv:1512.00025] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    A. Hebecker, F. Rompineve and A. Westphal, Axion monodromy and the weak gravity conjecture, JHEP 04 (2016) 157 [arXiv:1512.03768] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    K. Furuuchi, Excursions through KK modes, JCAP 07 (2016) 008 [arXiv:1512.04684] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Kaloper and A. Lawrence, London equation for monodromy inflation, Phys. Rev. D 95 (2017) 063526 [arXiv:1607.06105] [INSPIRE].
  12. [12]
    N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Kaloper, M. Kleban, A. Lawrence and M.S. Sloth, Large field inflation and gravitational entropy, Phys. Rev. D 93 (2016) 043510 [arXiv:1511.05119] [INSPIRE].
  15. [15]
    J.R. Espinosa et al., Cosmological Higgs-axion interplay for a naturally small electroweak scale, Phys. Rev. Lett. 115 (2015) 251803 [arXiv:1506.09217] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Choi and S.H. Im, Constraints on relaxion windows, JHEP 12 (2016) 093 [arXiv:1610.00680] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Batell, G.F. Giudice and M. McCullough, Natural heavy supersymmetry, JHEP 12 (2015) 162 [arXiv:1509.00834] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    J.L. Evans, T. Gherghetta, N. Nagata and Z. Thomas, Naturalizing supersymmetry with a two-field relaxion mechanism, JHEP 09 (2016) 150 [arXiv:1602.04812] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [arXiv:1511.00132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    N. Fonseca, L. de Lima, C.S. Machado and R.D. Matheus, Large field excursions from a few site relaxion model, Phys. Rev. D 94 (2016) 015010 [arXiv:1601.07183] [INSPIRE].
  21. [21]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
  22. [22]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].
  23. [23]
    R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from axion monodromy inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Aganagic, C. Beem, J. Seo and C. Vafa, Geometrically induced metastability and Holography, Nucl. Phys. B 789 (2008) 382 [hep-th/0610249] [INSPIRE].
  25. [25]
    A. Klemm, B. Lian, S.S. Roan and S.-T. Yau, Calabi-Yau fourfolds for M-theory and F-theory compactifications, Nucl. Phys. B 518 (1998) 515 [hep-th/9701023] [INSPIRE].
  26. [26]
    M. Berg, D. Marsh, L. McAllister and E. Pajer, Sequestering in string compactifications, JHEP 06 (2011) 134 [arXiv:1012.1858] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    C.P. Burgess et al., The inflationary brane anti-brane universe, JHEP 07 (2001) 047 [hep-th/0105204] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Retolaza, A.M. Uranga and A. Westphal, Bifid throats for axion monodromy inflation, JHEP 07 (2015) 099 [arXiv:1504.02103] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.P. Conlon, Brane-antibrane backreaction in axion monodromy inflation, JCAP 01 (2012) 033 [arXiv:1110.6454] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Saltman and E. Silverstein, A new handle on de Sitter compactifications, JHEP 01 (2006) 139 [hep-th/0411271] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The powers of monodromy, JHEP 09 (2014) 123 [arXiv:1405.3652] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive interactions: heavy particles and non-Gaussianity, JCAP 10 (2017) 058 [arXiv:1606.00513] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].
  36. [36]
    T.C. Bachlechner, M. Dias, J. Frazer and L. McAllister, Chaotic inflation with kinetic alignment of axion fields, Phys. Rev. D 91 (2015) 023520 [arXiv:1404.7496] [INSPIRE].
  37. [37]
    T.C. Bachlechner, C. Long and L. McAllister, Planckian axions in string theory, JHEP 12 (2015) 042 [arXiv:1412.1093] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].
  39. [39]
    T. Flacke, C. Frugiuele, E. Fuchs, R.S. Gupta and G. Perez, Phenomenology of relaxion-Higgs mixing, JHEP 06 (2017) 050 [arXiv:1610.02025] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    C. Long, L. McAllister and J. Stout, Systematics of axion inflation in Calabi-Yau hypersurfaces, JHEP 02 (2017) 014 [arXiv:1603.01259] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev. D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].
  42. [42]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].
  44. [44]
    A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP 09 (2015) 020 [arXiv:1503.00795] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, JHEP 01 (2016) 091 [arXiv:1503.07853] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, JHEP 04 (2016) 017 [arXiv:1504.00659] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP 12 (2015) 108 [arXiv:1506.03447] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP 02 (2016) 140 [arXiv:1509.06374] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev. D 95 (2017) 025013 [arXiv:1608.06951] [INSPIRE].
  53. [53]
    S. Gandhi, L. McAllister and S. Sjors, A toolkit for perturbing flux compactifications, JHEP 12 (2011) 053 [arXiv:1106.0002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Liam McAllister
    • 1
  • Pedro Schwaller
    • 2
    • 3
  • Geraldine Servant
    • 2
    • 4
  • John Stout
    • 1
  • Alexander Westphal
    • 2
  1. 1.Department of PhysicsCornell UniversityIthacaU.S.A.
  2. 2.DESYHamburgGermany
  3. 3.PRISMA Cluster of Excellence, Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany
  4. 4.II. Institute of Theoretical PhysicsUniv. HamburgHamburgGermany

Personalised recommendations