Advertisement

Journal of High Energy Physics

, 2018:109 | Cite as

Extra Higgs boson and Z as portals to signatures of heavy neutrinos at the LHC

  • Elena Accomando
  • Luigi Delle RoseEmail author
  • Stefano Moretti
  • Emmanuel Olaiya
  • Claire H. Shepherd-Themistocleous
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we discuss the potential of observing heavy neutrino (ν h ) signatures of a U(1)BL enlarged Standard Model (SM) encompassing three heavy Majorana neutrinos alongside the known light neutrino states at the Large Hadron Collider (LHC). We exploit the theoretical decay via a heavy (non-SM-like) Higgs boson and Z production followed by ν h l±W ∓(∗) and ν h ν l Z(∗) decays, ultimately yielding a 3l + 2j + E T miss signature and, depending upon how boosted the final state objects are, we define different possible selections aimed at improving the signal to background ratio in LHC Run 2 data for a wide range of heavy neutrino masses.

Keywords

Beyond Standard Model GUT Higgs Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Langacker, Grand Unified Theories and Proton Decay, Phys. Rept. 72 (1981) 185 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.L. Hewett and T.G. Rizzo, Low-Energy Phenomenology of Superstring Inspired E 6 Models, Phys. Rept. 183 (1989) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.E. Faraggi and D.V. Nanopoulos, A superstring Z at O(1-TeV)?, Mod. Phys. Lett. A 6 (1991) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.E. Faraggi and M. Guzzi, Extra Z s and W s in heterotic-string derived models, Eur. Phys. J. C 75 (2015) 537 [arXiv:1507.07406] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.E. Faraggi and J. Rizos, The 750 GeV di-photon LHC excess and extra Z s in heterotic-string derived models, Eur. Phys. J. C 76 (2016) 170 [arXiv:1601.03604] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  7. [7]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Khalil and A. Masiero, Radiative B-L symmetry breaking in supersymmetric models, Phys. Lett. B 665 (2008) 374 [arXiv:0710.3525] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard model: Z and neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].ADSGoogle Scholar
  10. [10]
    L. Basso, S. Moretti and G.M. Pruna, Constraining the g 1 coupling in the minimal BL Model, J. Phys. G 39 (2012) 025004 [arXiv:1009.4164] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous, Z discovery potential at the LHC in the minimal BL extension of the Standard Model, Eur. Phys. J. C 71 (2011) 1613 [arXiv:1002.3586] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Basso, S. Moretti and G.M. Pruna, Phenomenology of the minimal BL extension of the Standard Model: the Higgs sector, Phys. Rev. D 83 (2011) 055014 [arXiv:1011.2612] [INSPIRE].ADSGoogle Scholar
  13. [13]
    L. Basso, S. Moretti and G.M. Pruna, A Renormalisation Group Equation Study of the Scalar Sector of the Minimal B-L Extension of the Standard Model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L. Basso, S. Moretti and G.M. Pruna, Theoretical constraints on the couplings of non-exotic minimal Z bosons, JHEP 08 (2011) 122 [arXiv:1106.4762] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    L. Basso, K. Mimasu and S. Moretti, Z signals in polarised top-antitop final states, JHEP 09 (2012) 024 [arXiv:1203.2542] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Basso, K. Mimasu and S. Moretti, Non-exotic Z signals in ℓ + , \( b\overline{b} \) and \( t\overline{t} \) final states at the LHC, JHEP 11 (2012) 060 [arXiv:1208.0019] [INSPIRE].
  17. [17]
    E. Accomando, D. Becciolini, A. Belyaev, S. Moretti and C. Shepherd-Themistocleous, Z at the LHC: Interference and Finite Width Effects in Drell-Yan, JHEP 10 (2013) 153 [arXiv:1304.6700] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti and C. Shepherd-Themistocleous, Forward-backward asymmetry as a discovery tool for Z bosons at the LHC, JHEP 01 (2016) 127 [arXiv:1503.02672] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti and C. Shepherd-Themistocleous, A F B as a discovery tool for Z bosons at the LHC, Nuovo Cim. C 38 (2016) 153 [arXiv:1504.03168] [INSPIRE].
  20. [20]
    N. Okada and S. Okada, Z BL portal dark matter and LHC Run-2 results, Phys. Rev. D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Okada and S. Okada, Z -portal right-handed neutrino dark matter in the minimal U(1)X extended Standard Model, Phys. Rev. D 95 (2017) 035025 [arXiv:1611.02672] [INSPIRE].
  22. [22]
    G. Brooijmans et al., Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report, arXiv:1203.1488 [INSPIRE].
  23. [23]
    A. Caputo, P. Hernández, J. Lopez-Pavon and J. Salvado, The seesaw portal in testable models of neutrino masses, JHEP 06 (2017) 112 [arXiv:1704.08721] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.M. Gago, P. Hernández, J. Jones-Pérez, M. Losada and A. Moreno Briceño, Probing the Type I Seesaw Mechanism with Displaced Vertices at the LHC, Eur. Phys. J. C 75 (2015) 470 [arXiv:1505.05880] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P.S. Bhupal Dev, R. Franceschini and R.N. Mohapatra, Bounds on TeV Seesaw Models from LHC Higgs Data, Phys. Rev. D 86 (2012) 093010 [arXiv:1207.2756] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C.G. Cely, A. Ibarra, E. Molinaro and S.T. Petcov, Higgs Decays in the Low Scale Type I See-Saw Model, Phys. Lett. B 718 (2013) 957 [arXiv:1208.3654] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I.M. Shoemaker, K. Petraki and A. Kusenko, Collider signatures of sterile neutrinos in models with a gauge-singlet Higgs, JHEP 09 (2010) 060 [arXiv:1006.5458] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Antusch, E. Cazzato and O. Fischer, Displaced vertex searches for sterile neutrinos at future lepton colliders, JHEP 12 (2016) 007 [arXiv:1604.02420] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future e e + , pp and e p colliders, Int. J. Mod. Phys. A 32 (2017) 1750078 [arXiv:1612.02728] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches via displaced vertices at LHCb, Phys. Lett. B 774 (2017) 114 [arXiv:1706.05990] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Das, Pair production of heavy neutrinos in next-to-leading order QCD at the hadron colliders in the inverse seesaw framework, arXiv:1701.04946 [INSPIRE].
  32. [32]
    A. Das and N. Okada, Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches, Phys. Lett. B 774 (2017) 32 [arXiv:1702.04668] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Das, P.S.B. Dev and C.S. Kim, Constraining Sterile Neutrinos from Precision Higgs Data, Phys. Rev. D 95 (2017) 115013 [arXiv:1704.00880] [INSPIRE].ADSGoogle Scholar
  34. [34]
    E. Accomando, L. Delle Rose, S. Moretti, E. Olaiya and C.H. Shepherd-Themistocleous, Novel SM-like Higgs decay into displaced heavy neutrino pairs in U(1) models, JHEP 04 (2017) 081 [arXiv:1612.05977] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Z. Kang, P. Ko and J. Li, New Avenues to Heavy Right-handed Neutrinos with Pair Production at Hadronic Colliders, Phys. Rev. D 93 (2016) 075037 [arXiv:1512.08373] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Mitra, R. Ruiz, D.J. Scott and M. Spannowsky, Neutrino Jets from High-Mass W R Gauge Bosons in TeV-Scale Left-Right Symmetric Models, Phys. Rev. D 94 (2016) 095016 [arXiv:1607.03504] [INSPIRE].
  37. [37]
    O. Mattelaer, M. Mitra and R. Ruiz, Automated Neutrino Jet and Top Jet Predictions at Next-to-Leading-Order with Parton Shower Matching in Effective Left-Right Symmetric Models, arXiv:1610.08985 [INSPIRE].
  38. [38]
    E. Accomando, C. Corianò, L. Delle Rose, J. Fiaschi, C. Marzo and S. Moretti, Search for Z , vacuum (in)stability and hints of high-energy structures, EPJ Web Conf. 129 (2016) 00007 [arXiv:1609.05652] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    E. Accomando, C. Corianò, L. Delle Rose, J. Fiaschi, C. Marzo and S. Moretti, Phenomenology of minimal Z models: from the LHC to the GUT scale, EPJ Web Conf. 129 (2016) 00006 [arXiv:1609.05029] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    E. Accomando, C. Corianò, L. Delle Rose, J. Fiaschi, C. Marzo and S. Moretti, Z , Higgses and heavy neutrinos in U(1) models: from the LHC to the GUT scale, JHEP 07 (2016) 086 [arXiv:1605.02910] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Corianò, L. Delle Rose and C. Marzo, Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1)B−L, JHEP 02 (2016) 135 [arXiv:1510.02379] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Erler, P. Langacker, S. Munir and E. Rojas, Improved Constraints on Z Bosons from Electroweak Precision Data, JHEP 08 (2009) 017 [arXiv:0906.2435] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The Minimal Set of Electroweak Precision Parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].
  45. [45]
    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Z models: Present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    CMS collaboration, Search for narrow resonances in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=13 \) TeV and combination with 8 TeV data, Phys. Lett. B 768 (2017) 57 [arXiv:1609.05391] [INSPIRE].
  47. [47]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].
  49. [49]
    P. Bechtle et al., Recent Developments in HiggsBounds and a Preview of HiggsSignals, PoS(CHARGED2012)024 [arXiv:1301.2345] [INSPIRE].
  50. [50]
    P. Bechtle et al., HiggsBounds − 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur. Phys. J. C 75 (2015) 421 [arXiv:1507.06706] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  54. [54]
    G. Brooijmans et al., Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report, arXiv:1203.1488 [INSPIRE].
  55. [55]
    CMS collaboration, Search for \( \mathrm{t}\overline{\mathrm{t}} \) resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 001 [arXiv:1704.03366] [INSPIRE].
  56. [56]
    F. Gianotti et al., Physics potential and experimental challenges of the LHC luminosity upgrade, Eur. Phys. J. C 39 (2005) 293 [hep-ph/0204087] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Elena Accomando
    • 1
  • Luigi Delle Rose
    • 1
    • 2
    Email author
  • Stefano Moretti
    • 1
    • 2
  • Emmanuel Olaiya
    • 2
  • Claire H. Shepherd-Themistocleous
    • 2
  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.Particle Physics DepartmentRutherford Appleton LaboratoryDidcotU.K.

Personalised recommendations