Skip to main content

Flavoured Dark Matter moving left

A preprint version of the article is available at arXiv.

Abstract

We investigate the phenomenology of a simplified model of flavoured Dark Matter (DM), with a dark fermionic flavour triplet coupling to the left-handed SU(2) L quark doublets via a scalar mediator. The DM-quark coupling matrix is assumed to constitute the only new source of flavour and CP violation, following the hypothesis of Dark Minimal Flavour Violation. We analyse the constraints from LHC searches, from meson mixing data in the K, D, and B d,s meson systems, from thermal DM freeze-out, and from direct detection experiments. Our combined analysis shows that while the experimental constraints are similar to the DMFV models with DM coupling to right-handed quarks, the multitude of couplings between DM and the SM quark sector resulting from the SU(2) L structure implies a richer phenomenology and significantly alters the resulting impact on the viable parameter space.

References

  1. [1]

    G. Arcadi et al., The waning of the WIMP? A review of models, searches and constraints, arXiv:1703.07364 [INSPIRE].

  2. [2]

    B. Batell, J. Pradler and M. Spannowsky, Dark matter from minimal flavor violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  3. [3]

    P. Agrawal, M. Blanke and K. Gemmler, Flavored dark matter beyond Minimal Flavor Violation, JHEP 10 (2014) 072 [arXiv:1405.6709] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    C. Kilic, M.D. Klimek and J.-H. Yu, Signatures of top flavored dark matter, Phys. Rev. D 91 (2015) 054036 [arXiv:1501.02202] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored dark matter and its implications for direct detection and colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    K. Cheunget al., Top window for dark matter, Int. J. Mod. Phys. D 20 (2011) 1413 [INSPIRE].

  7. [7]

    J. Kile and A. Soni, Flavored dark matter in direct detection experiments and at LHC, Phys. Rev. D 84 (2011) 035016 [arXiv:1104.5239] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    J.F. Kamenik and J. Zupan, Discovering dark matter through flavor violation at the LHC, Phys. Rev. D 84 (2011) 111502 [arXiv:1107.0623] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    A. Kumar and S. Tulin, Top-flavored dark matter and the forward-backward asymmetry, Phys. Rev. D 87 (2013) 095006 [arXiv:1303.0332] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Effective WIMPs, Phys. Rev. D 89 (2014) 015011 [arXiv:1307.8120] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    J. Kile, Flavored dark matter: a review, Mod. Phys. Lett. A 28 (2013) 1330031 [arXiv:1308.0584] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    Y. Bai and J. Berger, Fermion portal dark matter, JHEP 11 (2013) 171 [arXiv:1308.0612] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    B. Batell, T. Lin and L.-T. Wang, Flavored dark matter and R-parity violation, JHEP 01 (2014) 075 [arXiv:1309.4462] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    P. Agrawal, Z. Chacko and C.B. Verhaaren, Leptophilic dark matter and the anomalous magnetic moment of the muon, JHEP 08 (2014) 147 [arXiv:1402.7369] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    P. Agrawal, B. Batell, D. Hooper and T. Lin, Flavored dark matter and the Galactic Center gamma-ray excess, Phys. Rev. D 90 (2014) 063512 [arXiv:1404.1373] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    M.A. Gomez, C.B. Jackson and G. Shaughnessy, Dark Matter on Top, JCAP 12 (2014) 025 [arXiv:1404.1918] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    A. Hamze, C. Kilic, J. Koeller, C. Trendafilova and J.-H. Yu, Lepton-flavored asymmetric dark matter and interference in direct detection, Phys. Rev. D 91 (2015) 035009 [arXiv:1410.3030] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    C.-J. Lee and J. Tandean, Lepton-flavored scalar dark matter with minimal flavor violation, JHEP 04 (2015) 174 [arXiv:1410.6803] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J. Kile, A. Kobach and A. Soni, Lepton-flavored dark matter, Phys. Lett. B 744 (2015) 330 [arXiv:1411.1407] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    P. Agrawal, Z. Chacko, E.C. F.S. Fortes and C. Kilic, Skew-flavored dark matter, Phys. Rev. D 93 (2016) 103510 [arXiv:1511.06293] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    L. Lopez-Honorez and L. Merlo, Dark matter within the minimal flavour violation ansatz, Phys. Lett. B 722 (2013) 135 [arXiv:1303.1087] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    M. Blanke and S. Kast, Top-flavoured dark matter in dark minimal flavour violation, JHEP 05 (2017) 162 [arXiv:1702.08457] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  23. [23]

    T. Jubb, M. Kirk and A. Lenz, Charming dark matter, JHEP 12 (2017) 010 [arXiv:1709.01930] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M.-C. Chen, J. Huang and V. Takhistov, Beyond minimal lepton flavored dark matter, JHEP 02 (2016) 060 [arXiv:1510.04694] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

  26. [26]

    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  27. [27]

    A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].

  28. [28]

    M. Blanke et al., Another look at the flavour structure of the littlest Higgs model with T-parity, Phys. Lett. B 646 (2007) 253 [hep-ph/0609284] [INSPIRE].

  29. [29]

    UTfit collaboration, M. Bona, Unitarity triangle analysis beyond the Standard Model from UTfit, PoS(ICHEP 2016)149.

  30. [30]

    M. Papucci, A. Vichi and K.M. Zurek, Monojet versus the rest of the world I: t-channel models, JHEP 11 (2014) 024 [arXiv:1402.2285] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].

  32. [32]

    T. Hurth and W. Porod, Flavour violating squark and gluino decays, JHEP 08 (2009) 087 [arXiv:0904.4574] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    M. Blanke, G.F. Giudice, P. Paradisi, G. Perez and J. Zupan, Flavoured naturalness, JHEP 06 (2013) 022 [arXiv:1302.7232] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    P. Agrawal and C. Frugiuele, Mixing stops at the LHC, JHEP 01 (2014) 115 [arXiv:1304.3068] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    M. Arana-Catania, S. Heinemeyer and M.J. Herrero, Updated constraints on general squark flavor mixing, Phys. Rev. D 90 (2014) 075003 [arXiv:1405.6960] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    M. Backović, A. Mariotti and M. Spannowsky, Signs of tops from highly mixed stops, JHEP 06 (2015) 122 [arXiv:1504.00927] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    M. Blanke, B. Fuks, I. Galon and G. Perez, Gluino meets flavored naturalness, JHEP 04 (2016) 044 [arXiv:1512.03813] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    UTfit collaboration, M. Bona et al., The UTfit collaboration report on the status of the unitarity triangle beyond the standard model. I. Model-independent analysis and minimal flavor violation, JHEP 03 (2006) 080 [hep-ph/0509219] [INSPIRE].

  39. [39]

    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

  40. [40]

    HFLAV collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].

  41. [41]

    G. Steigman, B. Dasgupta and J.F. Beacom, Precise relic WIMP abundance and its impact on searches for dark matter annihilation, Phys. Rev. D 86 (2012) 023506 [arXiv:1204.3622] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  43. [43]

    XENON collaboration, E. Aprile et al., First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].

  44. [44]

    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].

  45. [45]

    XENON collaboration, S. Diglio, XENON1T: the start of a new era in the search for Dark Matter, PoS(DSU2015)032.

  46. [46]

    LZ collaboration, D.S. Akerib et al., Lux-Zeplin (LZ) conceptual design report, arXiv:1509.02910 [INSPIRE].

  47. [47]

    DARWIN collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].

  48. [48]

    H. Liu, T.R. Slatyer and J. Zavala, Contributions to cosmic reionization from dark matter annihilation and decay, Phys. Rev. D 94 (2016) 063507 [arXiv:1604.02457] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    N. Carrasco et al., \( {D}^0-{\overline{D}}^0 \) mixing in the standard model and beyond from N f = 2 twisted mass QCD, Phys. Rev. D 90 (2014) 014502 [arXiv:1403.7302] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].

  52. [52]

    Fermilab Lattice, MILC collaboration, A. Bazavov et al., B 0(s) -mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D 93 (2016) 113016 [arXiv:1602.03560] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Monika Blanke.

Additional information

ArXiv ePrint: 1711.10493

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blanke, M., Das, S. & Kast, S. Flavoured Dark Matter moving left. J. High Energ. Phys. 2018, 105 (2018). https://doi.org/10.1007/JHEP02(2018)105

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Heavy Quark Physics
  • Kaon Physics