Advertisement

Journal of High Energy Physics

, 2018:103 | Cite as

Axion predictions in SO(10) × U(1)PQ models

  • Anne ErnstEmail author
  • Andreas Ringwald
  • Carlos Tamarit
Open Access
Regular Article - Theoretical Physics

Abstract

Non-supersymmetric Grand Unified SO(10) × U(1)PQ models have all the ingredients to solve several fundamental problems of particle physics and cosmology — neutrino masses and mixing, baryogenesis, the non-observation of strong CP violation, dark matter, inflation — in one stroke. The axion — the pseudo Nambu-Goldstone boson arising from the spontaneous breaking of the U(1)PQ Peccei-Quinn symmetry — is the prime dark matter candidate in this setup. We determine the axion mass and the low energy couplings of the axion to the Standard Model particles, in terms of the relevant gauge symmetry breaking scales. We work out the constraints imposed on the latter by gauge coupling unification. We discuss the cosmological and phenomenological implications.

Keywords

Beyond Standard Model GUT 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism, Phys. Rev. Lett. 118 (2017) 071802 [arXiv:1608.05414] [INSPIRE].
  2. [2]
    G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, Standard Model-axion-seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke, JCAP 08 (2017) 001 [arXiv:1610.01639] [INSPIRE].
  3. [3]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421.Google Scholar
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  5. [5]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  6. [6]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].
  11. [11]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127.Google Scholar
  12. [12]
    L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133.Google Scholar
  13. [13]
    M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137.Google Scholar
  14. [14]
    S. Borsányi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539 (2016) 69 [arXiv:1606.07494] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    V.B. Klaer and G.D. Moore, The dark-matter axion mass, JCAP 11 (2017) 049 [arXiv:1708.07521] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S.M. Boucenna and Q. Shafi, Axion inflation, proton decay and leptogenesis in SU(5) × U(1)PQ, arXiv:1712.06526 [INSPIRE].
  17. [17]
    H. Georgi, The state of the art-gauge theories, AIP Conf. Proc. 23 (1975) 575.ADSCrossRefGoogle Scholar
  18. [18]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].
  19. [19]
    D.B. Reiss, Invisible axion at an intermediate symmetry breaking scale, Phys. Lett. B 109 (1982) 365.Google Scholar
  20. [20]
    R.N. Mohapatra and G. Senjanović, The superlight axion and neutrino masses, Z. Phys. C 17 (1983) 53 [INSPIRE].
  21. [21]
    R. Holman, G. Lazarides and Q. Shafi, Axions and the dark matter of the Universe, Phys. Rev. D 27 (1983) 995 [INSPIRE].
  22. [22]
    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Yukawa sector in non-supersymmetric renormalizable SO(10), Phys. Rev. D 73 (2006) 055001 [hep-ph/0510139] [INSPIRE].
  23. [23]
    G. Altarelli and D. Meloni, A non supersymmetric SO(10) grand unified model for all the physics below M GUT , JHEP 08 (2013) 021 [arXiv:1305.1001] [INSPIRE].
  24. [24]
    K.S. Babu and S. Khan, Minimal nonsupersymmetric SO(10) model: gauge coupling unification, proton decay and fermion masses, Phys. Rev. D 92 (2015) 075018 [arXiv:1507.06712] [INSPIRE].
  25. [25]
    C.S. Fong, D. Meloni, A. Meroni and E. Nardi, Leptogenesis in SO(10), JHEP 01 (2015) 111 [arXiv:1412.4776] [INSPIRE].
  26. [26]
    N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand unification, Phys. Rev. D 46 (1993) 2261 [INSPIRE].
  27. [27]
    N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand unification with two intermediate stages, Phys. Rev. D 47 (1993) 2892 [hep-ph/9211232] [INSPIRE].
  28. [28]
    S. Bertolini, L. Di Luzio and M. Malinsky, Intermediate mass scales in the non-supersymmetric SO(10) grand unification: a reappraisal, Phys. Rev. D 80 (2009) 015013 [arXiv:0903.4049] [INSPIRE].
  29. [29]
    G.K. Leontaris, N. Okada and Q. Shafi, Non-minimal quartic inflation in supersymmetric SO(10), Phys. Lett. B 765 (2017) 256 [arXiv:1611.10196] [INSPIRE].
  30. [30]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  31. [31]
    G. Senjanović, SO(10): A Theory of fermion masses and mixings, hep-ph/0612312 [INSPIRE].
  32. [32]
    L. Di Luzio, Aspects of symmetry breaking in Grand Unified Theories, Ph.D Thesis, SISSA, Trieste, Italy (2011), arXiv:1110.3210 [INSPIRE].
  33. [33]
    K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].
  34. [34]
    A.S. Joshipura and K.M. Patel, Fermion masses in SO(10) models, Phys. Rev. D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE].
  35. [35]
    A. Dueck and W. Rodejohann, Fits to SO(10) grand unified models, JHEP 09 (2013) 024 [arXiv:1306.4468] [INSPIRE].
  36. [36]
    J. Chakrabortty et al., Roadmap of left-right models rooted in GUT, arXiv:1711.11391 [INSPIRE].
  37. [37]
    S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.S. Bell and R. Jackiw, A PCAC puzzle: π 0γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].
  39. [39]
    W.A. Bardeen, Anomalous Ward identities in spinor field theories, Phys. Rev. 184 (1969) 1848 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].
  41. [41]
    P. Breitenlohner and D. Maison, Dimensional renormalization and the action principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    P. Fileviez Perez and H.H. Patel, The electroweak vacuum angle, Phys. Lett. B 732 (2014) 241 [arXiv:1402.6340] [INSPIRE].
  43. [43]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
  44. [44]
    C. Vafa and E. Witten, Parity conservation in QCD, Phys. Rev. Lett. 53 (1984) 535 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    S. Weinberg, The quantum theory of fields. Volume 2: modern applications, Cambridge University Press, Cambridge U.K. (2013).Google Scholar
  47. [47]
    M. Srednicki, Axion couplings to matter. 1. CP conserving parts, Nucl. Phys. B 260 (1985) 689 [INSPIRE].
  48. [48]
    A.G. Dias et al., The quest for an intermediate-scale accidental axion and further ALPs, JHEP 06 (2014) 037 [arXiv:1403.5760] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T.W. Donnelly et al., Do axions exist?, Phys. Rev. D 18 (1978) 1607 [INSPIRE].
  50. [50]
    J.E. Kim, Natural embedding of Peccei-Quinn symmetry in flavor grand unification, Phys. Rev. D 26 (1982) 3221 [INSPIRE].
  51. [51]
    Ya.B. Zeldovich, I.Yu. Kobzarev and L.B. Okun, Cosmological consequences of the spontaneous breakdown of discrete symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3 [INSPIRE].
  52. [52]
    A. Vilenkin and A.E. Everett, Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons, Phys. Rev. Lett. 48 (1982) 1867 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  54. [54]
    A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].
  55. [55]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199.Google Scholar
  56. [56]
    C.Q. Geng and J.N. Ng, The domain wall number in various invisible axion models, Phys. Rev. D 41 (1990) 3848 [INSPIRE].
  57. [57]
    G. Lazarides and Q. Shafi, Axion models with no domain wall problem, Phys. Lett. 115B (1982) 21 [INSPIRE].
  58. [58]
    Wolfram Research Inc., ‘Mathematica, Version 11.2 (2017).Google Scholar
  59. [59]
    R. Feger and T.W. Kephart, LieART — A Mathematica application for Lie algebras and representation theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    F. del Aguila and L.E. Ibáñez, Higgs bosons in SO(10) and partial unification, Nucl. Phys. B 177 (1981) 60 [INSPIRE].
  61. [61]
    Super-Kamiokande collaboration, K. Abe et al., Search for proton decay via pe + π 0 and pμ + π 0 in 0.31 megaton · years exposure of the Super-Kamiokande water Cherenkov detector, Phys. Rev. D 95 (2017) 012004 [arXiv:1610.03597] [INSPIRE].
  62. [62]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
  63. [63]
    A. Arvanitaki and S. Dubovsky, Exploring the string axiverse with precision black hole physics, Phys. Rev. D 83 (2011) 044026 [arXiv:1004.3558] [INSPIRE].
  64. [64]
    A. Arvanitaki, M. Baryakhtar and X. Huang, Discovering the QCD axion with black holes and gravitational waves, Phys. Rev. D 91 (2015) 084011 [arXiv:1411.2263] [INSPIRE].
  65. [65]
    A. Ayala et al., Revisiting the bound on axion-photon coupling from globular clusters, Phys. Rev. Lett. 113 (2014) 191302 [arXiv:1406.6053] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    V.V. Dixit and M. Sher, The futility of high precision SO(10) calculations, Phys. Rev. D 40 (1989) 3765 [INSPIRE].
  67. [67]
    Hyper-Kamiokande Working Group collaboration, K. Abe et al., A long baseline neutrino oscillation experiment using J-PARC neutrino beam and Hyper-Kamiokande, arXiv:1412.4673 [INSPIRE].
  68. [68]
    K. Saikawa, Axion as a non-WIMP dark matter candidate, talk given at the 2017 European Physical Society Conference on High Energy Physics (EPS-HEP 2017), July 5-12, Venice, Italy (2017), arXiv:1709.07091 [INSPIRE].
  69. [69]
    A. Ringwald and K. Saikawa, Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario, Phys. Rev. D 93 (2016) 085031 [arXiv:1512.06436] [INSPIRE].
  70. [70]
    D. Budker et al., Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys. Rev. X 4 (2014) 021030 [arXiv:1306.6089] [INSPIRE].
  71. [71]
    I. Stern, ADMX status, PoS(ICHEP2016)198 [arXiv:1612.08296] [INSPIRE].
  72. [72]
    W. Chung, CULTASK, The Coldest Axion Experiment at CAPP/IBS in Korea, PoS(CORFU2015)047.
  73. [73]
    Y. Kahn, B.R. Safdi and J. Thaler, Broadband and resonant approaches to axion dark matter detection, Phys. Rev. Lett. 117 (2016) 141801 [arXiv:1602.01086] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    MADMAX Working Group collaboration, A. Caldwell et al., Dielectric haloscopes: a new way to detect axion dark matter, Phys. Rev. Lett. 118 (2017) 091801 [arXiv:1611.05865] [INSPIRE].
  75. [75]
    A. Arvanitaki and A.A. Geraci, Resonantly detecting axion-mediated forces with nuclear magnetic resonance, Phys. Rev. Lett. 113 (2014) 161801 [arXiv:1403.1290] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    E. Armengaud et al., Conceptual design of the International AXion Observatory (IAXO), 2014 JINST 9 T05002 [arXiv:1401.3233] [INSPIRE].
  77. [77]
    M. Giannotti, I.G. Irastorza, J. Redondo, A. Ringwald and K. Saikawa, Stellar Recipes for Axion Hunters, JCAP 10 (2017) 010 [arXiv:1708.02111] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M.S. Turner and F. Wilczek, Inflationary axion cosmology, Phys. Rev. Lett. 66 (1991) 5 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    M. Beltrán, J. García-Bellido and J. Lesgourgues, Isocurvature bounds on axions revisited, Phys. Rev. D 75 (2007) 103507 [hep-ph/0606107] [INSPIRE].
  80. [80]
    M.P. Hertzberg, M. Tegmark and F. Wilczek, Axion cosmology and the energy scale of inflation, Phys. Rev. D 78 (2008) 083507 [arXiv:0807.1726] [INSPIRE].
  81. [81]
    J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y.Y. Wong, Isocurvature forecast in the anthropic axion window, JCAP 06 (2009) 022 [arXiv:0904.0647] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    K. Abe et al., Letter of intent: The Hyper-Kamiokande Experiment — Detector design and physics potential, arXiv:1109.3262 [INSPIRE].
  83. [83]
    E. Kemp, The Deep Underground Neutrino Experiment: the precision era of neutrino physics, Astron. Nachr. 338 (2017) 993 [arXiv:1709.09385] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B 283 (1992) 278.Google Scholar
  85. [85]
    S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].
  86. [86]
    M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].
  87. [87]
    R. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].
  88. [88]
    B.M. Brubaker et al., First results from a microwave cavity axion search at 24 μeV, Phys. Rev. Lett. 118 (2017) 061302 [arXiv:1610.02580] [INSPIRE].
  89. [89]
    B.T. McAllister et al., The ORGAN experiment: an axion haloscope above 15 GHz, Phys. Dark Univ. 18 (2017) 67 [arXiv:1706.00209] [INSPIRE].CrossRefGoogle Scholar
  90. [90]
    R. Barbieri et al., Searching for galactic axions through magnetized media: the QUAX proposal, Phys. Dark Univ. 15 (2017) 135 [arXiv:1606.02201] [INSPIRE].CrossRefGoogle Scholar
  91. [91]
    D. Alesini et al., The KLASH proposal, arXiv:1707.06010 [INSPIRE].
  92. [92]
    G. Rybka et al., Search for dark matter axions with the Orpheus experiment, Phys. Rev. D 91 (2015) 011701 [arXiv:1403.3121] [INSPIRE].
  93. [93]
    Y. Mambrini et al., Dark matter and gauge coupling unification in nonsupersymmetric SO(10) grand unified models, Phys. Rev. D 91 (2015) 095010 [arXiv:1502.06929] [INSPIRE].
  94. [94]
    N. Nagata, K.A. Olive and J. Zheng, Weakly-Interacting Massive Particles in non-supersymmetric SO(10) grand unified models, JHEP 10 (2015) 193 [arXiv:1509.00809] [INSPIRE].
  95. [95]
    C. Arbelaez, R. Longas, D. Restrepo and O. Zapata, Fermion dark matter from SO(10) GUTs, Phys. Rev. D 93 (2016) 013012 [arXiv:1509.06313] [INSPIRE].
  96. [96]
    S.M. Boucenna, M.B. Krauss and E. Nardi, Dark matter from the vector of SO(10), Phys. Lett. B 755 (2016) 168 [arXiv:1511.02524] [INSPIRE].
  97. [97]
    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].
  99. [99]
    L.J. Hall, Grand unification of effective gauge theories, Nucl. Phys. B 178 (1981) 75 [INSPIRE].
  100. [100]
    S. Weinberg, Effective gauge theories, Phys. Lett. B 91 (1980) 51.Google Scholar
  101. [101]
    R.M. Fonseca, M. Malinský and F. Staub, Renormalization group equations and matching in a general quantum field theory with kinetic mixing, Phys. Lett. B 726 (2013) 882 [arXiv:1308.1674] [INSPIRE].
  102. [102]
    S. Bertolini, L. Di Luzio and M. Malinsky, Light color octet scalars in the minimal SO(10) grand unification, Phys. Rev. D 87 (2013) 085020 [arXiv:1302.3401] [INSPIRE].
  103. [103]
    K.S. Babu and S.M. Barr, Family symmetry, gravity and the strong CP problem, Phys. Lett. B 300 (1993) 367 [hep-ph/9212219] [INSPIRE].
  104. [104]
    A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion in models with large local discrete symmetries, Phys. Rev. D 67 (2003) 095008 [hep-ph/0211107] [INSPIRE].
  105. [105]
    K.S. Babu, I. Gogoladze and K. Wang, Stabilizing the axion by discrete gauge symmetries, Phys. Lett. B 560 (2003) 214 [hep-ph/0212339] [INSPIRE].
  106. [106]
    A.G. Dias, C.A. de S. Pires and P.S. Rodrigues da Silva, Discrete symmetries, invisible axion and lepton number symmetry in an economic 3-3-1 model, Phys. Rev. D 68 (2003) 115009 [hep-ph/0309058] [INSPIRE].
  107. [107]
    F. Björkeroth, E.J. Chun and S.F. King, Accidental Peccei-Quinn symmetry from discrete flavour symmetry and Pati-Salam, Phys. Lett. B 777 (2018) 428 [arXiv:1711.05741] [INSPIRE].
  108. [108]
    L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett. 119 (2017) 011801 [arXiv:1704.01122] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.Physik Department T70Technische Universität MünchenGarchingGermany

Personalised recommendations