Advertisement

Journal of High Energy Physics

, 2018:77 | Cite as

Cluster integrable systems, q-Painlevé equations and their quantization

  • M. Bershtein
  • P. Gavrylenko
  • A. Marshakov
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss the relation between the cluster integrable systems and q-difference Painlevé equations. The Newton polygons corresponding to these integrable systems are all 16 convex polygons with a single interior point. The Painlevé dynamics is interpreted as deautonomization of the discrete flows, generated by a sequence of the cluster quiver mutations, supplemented by permutations of quiver vertices.

We also define quantum q-Painlevé systems by quantization of the corresponding cluster variety. We present formal solution of these equations for the case of pure gauge theory using q-deformed conformal blocks or 5-dimensional Nekrasov functions. We propose, that quantum cluster structure of the Painlevé system provides generalization of the isomonodromy/CFT correspondence for arbitrary central charge.

Keywords

Supersymmetric Gauge Theory Conformal and W Symmetry Integrable Hierarchies Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Alim et al., \( \mathcal{N}=2 \) quantum field theories and their BPS quivers, Adv. Theor. Math. Phys. 18 (2014) 27 [arXiv:1112.3984] [INSPIRE].
  3. [3]
    H. Awata and Y. Yamada, Five-dimensional AGT conjecture and the deformed Virasoro algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-lagrangian theories from brane junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Berenstein and A. Zelevinsky, Quantum cluster algebras, Adv. in Math. 195 (2005) 405 [math/0404446].
  6. [6]
    M.A. Bershtein and A.I. Shchechkin, Bilinear equations on Painlevé τ functions from CFT, Commun. Math. Phys. 339 (2015) 1021 [arXiv:1406.3008] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    M.A. Bershtein and A.I. Shchechkin, q-deformed Painlevé τ function and q-deformed conformal blocks, J. Phys. A 50 (2017) 085202 [arXiv:1608.02566] [INSPIRE].
  8. [8]
    M.A. Bershtein and A.I. Shchechkin, Backlund transformation of Painlevé III(D 8 ) τ function, J. Phys. A 50 (2017) 115205 [arXiv:1608.02568] [INSPIRE].
  9. [9]
    G. Bonelli, A. Grassi and A. Tanzini, Quantum curves and q-deformed Painlevé equations, arXiv:1710.11603 [INSPIRE].
  10. [10]
    M. Caorsi and S. Cecotti, Categorical webs and S-duality in 4d \( \mathcal{N}=2 \) QFT, arXiv:1707.08981 [INSPIRE].
  11. [11]
    A.S. Carstea, A. Dzhamay and T. Takenawa, Fiber-dependent deautonomization of integrable 2D mappings and discrete Painlevé equations, J. Phys. A 50 (2017) 405202 [arXiv:1702.04907].
  12. [12]
    S. Cecotti and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4 dimensions, Surveys in differential geometry 18 (2013) [arXiv:1103.5832] [INSPIRE].
  13. [13]
    T. Eguchi and H. Kanno, Five-dimensional gauge theories and local mirror symmetry, Nucl. Phys. B 586 (2000) 331 [hep-th/0005008] [INSPIRE].
  14. [14]
    T. Eguchi and H. Kanno, Topological strings and Nekrasov’s formulas, JHEP 12 (2003) 006 [hep-th/0310235] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, Amer. Math. Soc. Transl. 194 (1999) 9 [math/9901053].
  16. [16]
    B. Feigin et al., Kernel function and quantum algebras, RIMS Kōkyūroku 1689 (2010) 133 [arXiv:1002.2485].
  17. [17]
    G. Felder and M. Müller-Lennert, Analyticity of Nekrasov partition functions, arXiv:1709.05232 [INSPIRE].
  18. [18]
    V.V. Fock and A.B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Ec. Norm. Super. 42 (2009) 865 [math/0311245] [INSPIRE].
  19. [19]
    V. Fock and A. Goncharov, Cluster X-varieties, amalgamation and Poisson-Lie groups, in Algebraic Geometry Theory and Number Theory, Progress in Mathematics volume 253, Birkhäuser, Boston U.S.A. (2006), math/0508408.
  20. [20]
    V. Fock and A. Marshakov, A note on quantum groups and relativistic Toda theory, Nucl. Phys. Proc. Suppl. B 56 (1997) 208.Google Scholar
  21. [21]
    V.V. Fock and A. Marshakov, Loop groups, clusters, dimers and integrable systems, in Geometry and quantization of moduli spaces, V. Fock et al. eds., Birkhäuser, Boston U.S.A. (2016), arXiv:1401.1606 [INSPIRE].
  22. [22]
    S. Fomin and A. Zelevinsky, Cluster algebras IV: coefficients, Compos. Math. 143 (2007) 112 [math/0602259].
  23. [23]
    S. Franco, Y.-H. He, C. Sun and Y. Xiao, A comprehensive survey of brane tilings, Int. J. Mod. Phys. A 32 (2017) 1750142 [arXiv:1702.03958] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, Adv. Math. 234 (2013) 239 [arXiv:0907.3987] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    O. Gamayun, N. Iorgov and O. Lisovyy, Conformal field theory of Painlevé VI, JHEP 10 (2012) 038 [Erratum ibid. 1210 (2012) 183] [arXiv:1207.0787] [INSPIRE].
  26. [26]
    O. Gamayun, N. Iorgov and O. Lisovyy, How instanton combinatorics solves Painlevé VI, V and IIIs, J. Phys. A 46 (2013) 335203 [arXiv:1302.1832] [INSPIRE].
  27. [27]
    P. Gavrylenko, Isomonodromic τ -functions and W N conformal blocks, JHEP 09 (2015) 167 [arXiv:1505.00259] [INSPIRE].
  28. [28]
    A.B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, Ann. Sci. Ec. Norm. Sup 46 (2013) 747 [arXiv:1107.5588] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].
  30. [30]
    B. Grammaticos and A. Ramani, Discrete Painlevé equations: a review, Lect. Notes Phys. 644 (2004) 245.Google Scholar
  31. [31]
    K. Hasegawa, Quantizing the Bäcklund transformations of Painlevé equations and the quantum discrete Painlevé VI equation, Adv. Studies Pure Math. 61 (2011) 275 [math/0703036]. .
  32. [32]
    A. Hanany and R.-K. Seong, Brane tilings and reflexive polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Hone, R. Inoue Discrete Painlevé equations from Y -systems, J. Phys. 47 (2014) 474007 [arXiv:1405.5379].
  34. [34]
    A. Iqbal and A.-K. Kashani-Poor, SU(N) geometries and topological string amplitudes, Adv. Theor. Math. Phys. 10 (2006) 1 [hep-th/0306032] [INSPIRE].
  35. [35]
    N. Iorgov, O. Lisovyy and J. Teschner, Isomonodromic tau-functions from Liouville conformal blocks, Commun. Math. Phys. 336 (2015) 671 [arXiv:1401.6104] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Jimbo, H. Nagoya and H. Sakai, CFT approach to the q-Painlevé VI equation, J. Int. Syst. 2 (2017) 1 [arXiv:1706.01940].Google Scholar
  37. [37]
    N. Joishi, N. Nakazono and Y. Shi, Lattice equations arising from discrete Painlevé systems (I): (A 2 + A 1)(1) and (A 1 + A 1)(1) cases, J. Math. Phys. 56 (2015) 092705 [arXiv:1401.7044].
  38. [38]
    K. Kajiwara et al., Cubic pencils and Painlevé hamiltonians, Funkcial. Ekvac. 48 (2005) 147 [nlin/0403009].
  39. [39]
    K. Kajiwara, M. Noumi, and Y. Yamada, Geometric aspects of Painlevé equations, J. Phys. A 50 (2017) 073001 [arXiv:1509.08186].
  40. [40]
    O. Kruglinskaya and A. Marshakov, On Lie groups and Toda lattices, J. Phys. A 48 (2015) 125201 [arXiv:1404.6507] [INSPIRE].
  41. [41]
    I.M. Krichever and D.H. Phong, On the integrable geometry of soliton equations and N = 2 supersymmetric gauge theories, J. Diff. Geom. 45 (1997) 349 [hep-th/9604199] [INSPIRE].
  42. [42]
    G. Kuroki, Quantum groups and quantization of Weyl group symmetries of Painlevé systems, Adv. Studies Pure Math. 61 (2011) 289 [arXiv:0808.2604].zbMATHGoogle Scholar
  43. [43]
    A. Marshakov, Lie groups, cluster variables and integrable systems, J. Geom. Phys. 67 (2013) 16 [arXiv:1207.1869] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Mironov and A. Morozov, q-Painleve equation from Virasoro constraints, arXiv:1708.07479 [INSPIRE].
  45. [45]
    S. Mizoguchi and Y. Yamada, W (E 10) symmetry, M-theory and Painlevé equations, Phys. Lett. B 537 (2002) 130 [hep-th/0202152] [INSPIRE].
  46. [46]
    G. Musiker and C. Stump, A compendium on the cluster algebra and quiver package in Sage, Sem. Lothar. Comb. 65 (2011) [arXiv:1102.4844].
  47. [47]
    H. Nagoya and Y. Yamada, Symmetries of quantum Lax equations for the Painlevé equations, Ann. Henri Poincaré 15 (2014) 313 [arXiv:1206.5963] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].
  49. [49]
    N. Okubo, Bilinear equations and q-discrete Painlevé equations satisfied by variables and coefficients in cluster algebras, J. Phys. A 48 (2015) 355201 [arXiv:1505.03067].
  50. [50]
    N. Okubo, Co-primeness preserving higher dimensional extension of q-discrete Painlevé I, II equations, arXiv:1704.05403.
  51. [51]
    H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math.Phys. 220 (2001) 165.Google Scholar
  52. [52]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].
  53. [53]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  54. [54]
    T. Tsuda, τ functions of q-Painlevé III and IV equations, Lett. Math. Phys. 75 (2006) 39.Google Scholar
  55. [55]
    T. Tsuda, Tropical Weyl group action via point configurations and τ -functions of the q-Painlevé equations, Lett. Math. Phys. 77 (2006) 21.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    T. Tsuda, Universal character and q-difference Painlevé equations with affine Weyl groups, Math. Ann. 345 (2009) 395 [arXiv:0811:3112].MathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    T. Tsuda and T. Masuda, q-Painlevé VI equation arising from q-UC hierarchy, Comm. Math. Phys. 262 (2006) 595.Google Scholar
  58. [58]
    Y. Yamada, Amoebae of type E, talk at the VII Workshop on Geometric Correspondences of Gauge Theories, July 10-14, SISSA, Trieste, Italy (2017).Google Scholar
  59. [59]
    A. Yanagida, Norm of the Whittaker vector of the deformed Virasoro algebra, Eur. J. Phys. 36 (2015) 035019 [arXiv:1411.0642].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Center for Advanced Studies, SkoltechMoscowRussia
  3. 3.Department of Mathematics and Laboratory for Mathematical PhysicsNational Research University Higher School of EconomicsMoscowRussian Federation
  4. 4.Institute for Information Transmission ProblemsMoscowRussia
  5. 5.Independent University of MoscowMoscowRussia
  6. 6.Bogolyubov Institute for Theoretical PhysicsKyivUkraine
  7. 7.Institute for Theoretical and Experimental PhysicsMoscowRussia
  8. 8.Theory Department of Lebedev Physics InstituteMoscowRussia

Personalised recommendations