Journal of High Energy Physics

, 2018:73 | Cite as

The C2HDM revisited

  • Duarte Fontes
  • Margarete Mühlleitner
  • Jorge C. Romão
  • Rui Santos
  • João P. Silva
  • Jonas Wittbrodt
Open Access
Regular Article - Theoretical Physics


The complex two-Higgs doublet model is one of the simplest ways to extend the scalar sector of the Standard Model to include a new source of CP-violation. The model has been used as a benchmark model to search for CP-violation at the LHC and as a possible explanation for the matter-antimatter asymmetry of the Universe. In this work, we re-analyse in full detail the softly broken 2 symmetric complex two-Higgs doublet model (C2HDM). We provide the code C2HDM_HDECAY implementing the C2HDM in the well-known HDECAY program which calculates the decay widths including the state-of-the-art higher order QCD corrections and the relevant off-shell decays. Using C2HDM_HDECAY together with the most relevant theoretical and experimental constraints, including electric dipole moments (EDMs), we review the parameter space of the model and discuss its phenomenology. In particular, we find cases where large CP-odd couplings to fermions are still allowed and provide benchmark points for these scenarios. We examine the prospects of discovering CP-violation at the LHC and show how theoretically motivated measures of CP-violation correlate with observables.


Beyond Standard Model CP violation Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].Google Scholar
  4. [4]
    T.D. Lee, A theory of spontaneous T violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].ADSGoogle Scholar
  5. [5]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].
  6. [6]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    I.P. Ivanov, Building and testing models with extended Higgs sectors, Prog. Part. Nucl. Phys. 95 (2017) 160 [arXiv:1702.03776] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    I.F. Ginzburg, M. Krawczyk and P. Osland, Two-Higgs-Doublet Models with CP-violation, in the proceedongs of the International Workshop on physics and experiments with future electron-positron linear colliders (LCWS 2002), August 26-30, Seogwipo, Korea (2002) [CERN-TH-2002-330].
  9. [9]
    W. Khater and P. Osland, CP violation in top quark production at the LHC and two Higgs doublet models, Nucl. Phys. B 661 (2003) 209 [hep-ph/0302004] [INSPIRE].
  10. [10]
    A.W. El Kaffas, P. Osland and O.M. Ogreid, CP violation, stability and unitarity of the two Higgs doublet model, Nonlin. Phenom. Complex Syst. 10 (2007) 347 [hep-ph/0702097] [INSPIRE].
  11. [11]
    B. Grzadkowski and P. Osland, Tempered two-Higgs-doublet model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].
  12. [12]
    A. Arhrib, E. Christova, H. Eberl and E. Ginina, CP violation in charged Higgs production and decays in the complex two Higgs doublet model, JHEP 04 (2011) 089 [arXiv:1011.6560] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].
  14. [14]
    S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].ADSGoogle Scholar
  15. [15]
    K. Cheung, J.S. Lee, E. Senaha and P.-Y. Tseng, Confronting Higgcision with electric dipole moments, JHEP 06 (2014) 149 [arXiv:1403.4775] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Fontes, J.C. Romão and J.P. Silva, hZγ in the complex two Higgs doublet model, JHEP 12 (2014) 043 [arXiv:1408.2534] [INSPIRE].
  17. [17]
    D. Fontes, J.C. Romão, R. Santos and J.P. Silva, Large pseudoscalar Yukawa couplings in the complex 2HDM, JHEP 06 (2015) 060 [arXiv:1502.01720] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.-Y. Chen, S. Dawson and Y. Zhang, Complementarity of LHC and EDMs for exploring Higgs CP-violation, JHEP 06 (2015) 056 [arXiv:1503.01114] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Mühlleitner, M.O.P. Sampaio, R. Santos and J. Wittbrodt, Phenomenological comparison of models with extended Higgs sectors, JHEP 08 (2017) 132 [arXiv:1703.07750] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Grober, M. Muhlleitner and M. Spira, Higgs pair production at NLO QCD for CP-violating Higgs sectors, Nucl. Phys. B 925 (2017) 1 [arXiv:1705.05314] [INSPIRE].
  21. [21]
    J.F. Gunion and X.-G. He, Determining the CP nature of a neutral Higgs boson at the LHC, Phys. Rev. Lett. 76 (1996) 4468 [hep-ph/9602226] [INSPIRE].
  22. [22]
    F. Boudjema, R.M. Godbole, D. Guadagnoli and K.A. Mohan, Lab-frame observables for probing the top-Higgs interaction, Phys. Rev. D 92 (2015) 015019 [arXiv:1501.03157] [INSPIRE].
  23. [23]
    S. Amor Dos Santos et al., Probing the CP nature of the Higgs coupling in tth events at the LHC, Phys. Rev. D 96 (2017) 013004 [arXiv:1704.03565] [INSPIRE].
  24. [24]
    S. Berge, W. Bernreuther and J. Ziethe, Determining the CP parity of Higgs bosons at the LHC in their τ decay channels, Phys. Rev. Lett. 100 (2008) 171605 [arXiv:0801.2297] [INSPIRE].
  25. [25]
    S. Berge and W. Bernreuther, Determining the CP parity of Higgs bosons at the LHC in the τ to 1-prong decay channels, Phys. Lett. B 671 (2009) 470 [arXiv:0812.1910] [INSPIRE].
  26. [26]
    S. Berge, W. Bernreuther, B. Niepelt and H. Spiesberger, How to pin down the CP quantum numbers of a Higgs boson in its τ decays at the LHC, Phys. Rev. D 84 (2011) 116003 [arXiv:1108.0670] [INSPIRE].
  27. [27]
    S. Berge, W. Bernreuther and S. Kirchner, Determination of the Higgs CP-mixing angle in the tau decay channels at the LHC including the Drell-Yan background, Eur. Phys. J. C 74 (2014) 3164 [arXiv:1408.0798] [INSPIRE].
  28. [28]
    S. Berge, W. Bernreuther and S. Kirchner, Prospects of constraining the Higgs bosons CP nature in the tau decay channel at the LHC, Phys. Rev. D 92 (2015) 096012 [arXiv:1510.03850] [INSPIRE].
  29. [29]
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].
  30. [30]
    C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in H → ZZ → l 1+ l 1 l 2+ l 2 at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].
  31. [31]
    R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [arXiv:1506.05669] [INSPIRE].
  33. [33]
    CMS collaboration, Combined search for anomalous pseudoscalar HVV couplings in \( VH\left(H\to b\overline{b}\right) \) production and HVV decay, Phys. Lett. B 759 (2016) 672 [arXiv:1602.04305] [INSPIRE].
  34. [34]
    G.C. Branco, L. Lavoura and J.P. Silva, CP Violation, Int. Ser. Monogr. Phys. 103 (1999) 1 [INSPIRE].Google Scholar
  35. [35]
    D. Fontes, J.C. Romão, R. Santos and J.P. Silva, Undoubtable signs of CP -violation in Higgs boson decays at the LHC run 2, Phys. Rev. D 92 (2015) 055014 [arXiv:1506.06755] [INSPIRE].
  36. [36]
    A. Arhrib and R. Benbrik, Searching for a CP-odd Higgs via a pair of gauge bosons at the LHC, hep-ph/0610184 [INSPIRE].
  37. [37]
    W. Bernreuther, P. Gonzalez and M. Wiebusch, Pseudoscalar Higgs bosons at the LHC: production and decays into electroweak gauge bosons revisited, Eur. Phys. J. C 69 (2010) 31 [arXiv:1003.5585] [INSPIRE].
  38. [38]
    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [INSPIRE].
  39. [39]
    F.J. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [INSPIRE].
  40. [40]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
  41. [41]
    J.M. Butterworth et al., The tools and Monte Carlo working group Summary Report from the Les Houches 2009 Workshop on TeV Colliders, in the proceedings of the 6th Workshop on Physics at TeV colliders, dedicated to Thomas Binoth, June 8-26, Les Houches, France (2009), arXiv:1003.1643 [INSPIRE].
  42. [42]
    D. Fontes et al., Couplings of the C2HDM, (2017).
  43. [43]
    S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  44. [44]
    E.A. Paschos, Diagonal neutral currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].ADSGoogle Scholar
  45. [45]
    R. Coimbra, M.O.P. Sampaio and R. Santos, ScannerS: constraining the phase diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C 73 (2013) 2428 [arXiv:1301.2599] [INSPIRE].
  46. [46]
    R. Costa et al., ScannerS project, (2016).
  47. [47]
    S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].
  48. [48]
    A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].
  49. [49]
    I.F. Ginzburg and I.P. Ivanov, Tree level unitarity constraints in the 2HDM with CP-violation, hep-ph/0312374 [INSPIRE].
  50. [50]
    I.P. Ivanov and J.P. Silva, Tree-level metastability bounds for the most general two Higgs doublet model, Phys. Rev. D 92 (2015) 055017 [arXiv:1507.05100] [INSPIRE].
  51. [51]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  52. [52]
    O. Deschamps et al., The two Higgs doublet of type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].
  53. [53]
    F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].
  54. [54]
    T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X}_s\gamma \) in the two Higgs doublet model up to next-to-next-to-leading order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].
  55. [55]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on M H± in the Two-Higgs-Doublet Model, Eur. Phys. J. C 77 (2017) 201 [arXiv:1702.04571] [INSPIRE].
  57. [57]
    LEP, DELPHI, OPAL, ALEPH, L3 collaboration, G. Abbiendi et al., Search for charged Higgs bosons: combined results using LEP data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].
  58. [58]
    H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].
  59. [59]
    ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  60. [60]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    P. Bechtle et al., HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].
  62. [62]
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].
  63. [63]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  64. [64]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi Bento: beyond NNLO and the heavy-top limit, Comput. Phys. Commun. 212 (2017) 239 [arXiv:1605.03190] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    P. Hafliger and M. Spira, Associated Higgs boson production with heavy quarks in e + e collisions: SUSY-QCD corrections, Nucl. Phys. B 719 (2005) 35 [hep-ph/0501164] [INSPIRE].
  67. [67]
    A.J. Buras, G. Isidori and P. Paradisi, EDMs vs. CPV in B s,d mixing in two Higgs doublet models with MFV, Phys. Lett. B 694 (2011) 402 [arXiv:1007.5291] [INSPIRE].
  68. [68]
    J.M. Cline, K. Kainulainen and M. Trott, Electroweak baryogenesis in two Higgs doublet models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    M. Jung and A. Pich, Electric dipole moments in two-Higgs-doublet models, JHEP 04 (2014) 076 [arXiv:1308.6283] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Shu and Y. Zhang, Impact of a CP-violating Higgs sector: from LHC to baryogenesis, Phys. Rev. Lett. 111 (2013) 091801 [arXiv:1304.0773] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    P. Basler, M. Mühlleitner and J. Wittbrodt, The CP-Violating 2HDM in light of a strong first order electroweak phase transition and implications for Higgs pair production, arXiv:1711.04097 [INSPIRE].
  73. [73]
    ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  74. [74]
    S.F. King, M. Muhlleitner, R. Nevzorov and K. Walz, Exploring the CP-violating NMSSM: EDM constraints and phenomenology, Nucl. Phys. B 901 (2015) 526 [arXiv:1508.03255] [INSPIRE].
  75. [75]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
  76. [76]
    B. Graner, Y. Chen, E.G. Lindahl and B.R. Heckel, Reduced limit on the permanent electric dipole moment of 199 Hg, Phys. Rev. Lett. 116 (2016) 161601 [arXiv:1601.04339] [INSPIRE].
  77. [77]
    N. Yamanaka et al., Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP-violation, Eur. Phys. J. A 53 (2017) 54 [arXiv:1703.01570] [INSPIRE].
  78. [78]
    W.B. Cairncross et al., Precision measurement of the electrons electric dipole moment using trapped molecular ions, Phys. Rev. Lett. 119 (2017) 153001 [arXiv:1704.07928] [INSPIRE].
  79. [79]
    ACME collaboration, J. Baron et al., Methods, analysis and the treatment of systematic errors for the electron electric dipole moment search in thorium monoxide, New J. Phys. 19 (2017) 073029 [arXiv:1612.09318] [INSPIRE].
  80. [80]
    K. Harada et al., Development of a magneto-optical trap system of francium atoms for the electron electric-dipole-moment search, J. Phys. Conf. Ser. 691 (2016) 012017.Google Scholar
  81. [81]
    N. Yamanaka, Review of the electric dipole moment of light nuclei, Int. J. Mod. Phys. E 26 (2017) 1730002 [arXiv:1609.04759] [INSPIRE].
  82. [82]
    P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [INSPIRE].
  83. [83]
    P.M. Ferreira, R. Guedes, M.O.P. Sampaio and R. Santos, Wrong sign and symmetric limits and non-decoupling in 2HDMs, JHEP 12 (2014) 067 [arXiv:1409.6723] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    DELPHI, OPAL, ALEPH, LEP Working Group for Higgs Boson Searches, L3 collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].
  85. [85]
    A. Mendez and A. Pomarol, Signals of CP-violation in the Higgs sector, Phys. Lett. B 272 (1991) 313 [INSPIRE].
  86. [86]
    W. Khater and P. Osland, Maximal CP nonconservation in the two Higgs doublet model, Acta Phys. Polon. B 34 (2003) 4531 [hep-ph/0305308] [INSPIRE].
  87. [87]
    LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  88. [88]
    J.C. Romao and J.P. Silva, A resource for signs and Feynman diagrams of the standard model, Int. J. Mod. Phys. A 27 (2012) 1230025 [arXiv:1209.6213] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Departamento de Física and CFTP, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  2. 2.Institute for Theoretical Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.ISEL — Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de LisboaLisboaPortugal
  4. 4.Centro de Física Teórica e Computacional, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  5. 5.LIP, Departamento de FísicaUniversidade do MinhoBragaPortugal
  6. 6.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations