Advertisement

Journal of High Energy Physics

, 2018:54 | Cite as

A universal counting of black hole microstates in AdS4

  • Francesco Azzurli
  • Nikolay Bobev
  • P. Marcos Crichigno
  • Vincent S. Min
  • Alberto ZaffaroniEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Many three-dimensional \( \mathcal{N}=2 \) SCFTs admit a universal partial topological twist when placed on hyperbolic Riemann surfaces. We exploit this fact to derive a universal formula which relates the planar limit of the topologically twisted index of these SCFTs and their three-sphere partition function. We then utilize this to account for the entropy of a large class of supersymmetric asymptotically AdS4 magnetically charged black holes in M-theory and massive type IIA string theory. In this context we also discuss novel AdS2 solutions of eleven-dimensional supergravity which describe the near horizon region of large new families of supersymmetric black holes arising from M2-branes wrapping Riemann surfaces.

Keywords

AdS-CFT Correspondence Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [INSPIRE].
  3. [3]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS4, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].
  6. [6]
    S.M. Hosseini and A. Zaffaroni, Large-N matrix models for 3d \( \mathcal{N}=2 \) theories: twisted index, free energy and black holes, JHEP 08 (2016) 064 [arXiv:1604.03122] [INSPIRE].
  7. [7]
    S.M. Hosseini and N. Mekareeya, Large-N topologically twisted index: necklace quivers, dualities and Sasaki-Einstein spaces, JHEP 08 (2016) 089 [arXiv:1604.03397] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].Google Scholar
  9. [9]
    C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories, JHEP 08 (2016) 059 [arXiv:1605.06531] [INSPIRE].
  10. [10]
    S.M. Hosseini, A. Nedelin and A. Zaffaroni, The Cardy limit of the topologically twisted index and black strings in AdS 5 , JHEP 04 (2017) 014 [arXiv:1611.09374] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Cabo-Bizet, V.I. Giraldo-Rivera and L.A. Pando Zayas, Microstate counting of AdS 4 hyperbolic black hole entropy via the topologically twisted index, JHEP 08 (2017) 023 [arXiv:1701.07893] [INSPIRE].
  12. [12]
    L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].
  13. [13]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].
  14. [14]
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420 [hep-th/9511222] [INSPIRE].
  15. [15]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].
  16. [16]
    J.P. Gauntlett, N. Kim, S. Pakis and D. Waldram, Membranes wrapped on holomorphic curves, Phys. Rev. D 65 (2002) 026003 [hep-th/0105250] [INSPIRE].
  17. [17]
    J.P. Gauntlett, Branes, calibrations and supergravity, hep-th/0305074 [INSPIRE].
  18. [18]
    N. Kim and J.-D. Park, Comments on AdS 2 solutions of D = 11 supergravity, JHEP 09 (2006) 041 [hep-th/0607093] [INSPIRE].
  19. [19]
    J.P. Gauntlett and N. Kim, Geometries with Killing Spinors and Supersymmetric AdS Solutions, Commun. Math. Phys. 284 (2008) 897 [arXiv:0710.2590] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS 3, AdS 2 and Bubble Solutions, JHEP 04 (2007) 005 [hep-th/0612253] [INSPIRE].
  21. [21]
    N. Kim, The Backreacted Kähler Geometry of Wrapped Branes, Phys. Rev. D 86 (2012) 067901 [arXiv:1206.1536] [INSPIRE].
  22. [22]
    A. Donos and J.P. Gauntlett, Supersymmetric quantum criticality supported by baryonic charges, JHEP 10 (2012) 120 [arXiv:1208.1494] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N. Kim, Comments on AdS 2 solutions from M2-branes on complex curves and the backreacted Kähler geometry, Eur. Phys. J. C 74 (2014) 2778 [arXiv:1311.7372] [INSPIRE].
  24. [24]
    A. Guarino, BPS black hole horizons from massive IIA, JHEP 08 (2017) 100 [arXiv:1706.01823] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Guarino and J. Tarrío, BPS black holes from massive IIA on S 6, JHEP 09 (2017) 141 [arXiv:1703.10833] [INSPIRE].
  26. [26]
    S.M. Hosseini, K. Hristov and A. Passias, Holographic microstate counting for AdS 4 black holes in massive IIA supergravity, JHEP 10 (2017) 190 [arXiv:1707.06884] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Benini, H. Khachatryan and P. Milan, Black hole entropy in massive Type IIA, Class. Quant. Grav. 35 (2018) 035004 [arXiv:1707.06886] [INSPIRE].
  28. [28]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].
  30. [30]
    F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE].
  31. [31]
    N. Bobev and P.M. Crichigno, Universal RG Flows Across Dimensions and Holography, JHEP 12 (2017) 065 [arXiv:1708.05052] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  33. [33]
    N.A. Nekrasov and S.L. Shatashvili, Bethe/Gauge correspondence on curved spaces, JHEP 01 (2015) 100 [arXiv:1405.6046] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].
  37. [37]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].
  38. [38]
    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the three-dimensional A-twist, JHEP 03 (2017) 074 [arXiv:1701.03171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].
  41. [41]
    A. Hanany, D. Vegh and A. Zaffaroni, Brane Tilings and M2 Branes, JHEP 03 (2009) 012 [arXiv:0809.1440] [INSPIRE].
  42. [42]
    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons Theories and M2 Branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [INSPIRE].
  43. [43]
    D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS 4 /CF T 3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [INSPIRE].
  44. [44]
    D. Gaiotto and D.L. Jafferis, Notes on adding D6 branes wrapping Rp 3 in AdS 4 × CP 3, JHEP 11 (2012) 015 [arXiv:0903.2175] [INSPIRE].
  45. [45]
    F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    D.L. Jafferis and A. Tomasiello, A Simple class of N = 3 gauge/gravity duals, JHEP 10 (2008) 101 [arXiv:0808.0864] [INSPIRE].
  47. [47]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].
  48. [48]
    D.R. Gulotta, J.P. Ang and C.P. Herzog, Matrix Models for Supersymmetric Chern-Simons Theories with an ADE Classification, JHEP 01 (2012) 132 [arXiv:1111.1744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    P.M. Crichigno, C.P. Herzog and D. Jain, Free Energy of D n Quiver Chern-Simons Theories, JHEP 03 (2013) 039 [arXiv:1211.1388] [INSPIRE].
  50. [50]
    P.M. Crichigno and D. Jain, Non-toric Cones and Chern-Simons Quivers, JHEP 05 (2017) 046 [arXiv:1702.05486] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    D. Martelli and J. Sparks, AdS(40/CFT(3) duals from M2-branes at hypersurface singularities and their deformations, JHEP 12 (2009) 017 [arXiv:0909.2036] [INSPIRE].
  52. [52]
    F. Benini, C. Closset and S. Cremonesi, Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS4/CFT3, JHEP 09 (2011) 005 [arXiv:1105.2299] [INSPIRE].
  53. [53]
    A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].
  54. [54]
    M. Fluder and J. Sparks, D2-brane Chern-Simons theories: F-maximization = a-maximization, JHEP 01 (2016) 048 [arXiv:1507.05817] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    Y. Imamura, D. Yokoyama and S. Yokoyama, Superconformal index for large-N quiver Chern-Simons theories, JHEP 08 (2011) 011 [arXiv:1102.0621] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    S. Cheon, D. Gang, S. Kim and J. Park, Refined test of AdS4/CFT3 correspondence for N = 2,3 theories, JHEP 05 (2011) 027 [arXiv:1102.4273] [INSPIRE].
  57. [57]
    D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys. 280 (2008) 611 [hep-th/0603021] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    D.Z. Freedman and A.K. Das, Gauge Internal Symmetry in Extended Supergravity, Nucl. Phys. B 120 (1977) 221 [INSPIRE].
  59. [59]
    D. Martelli, A. Passias and J. Sparks, The supersymmetric NUTs and bolts of holography, Nucl. Phys. B 876 (2013) 810 [arXiv:1212.4618] [INSPIRE].
  60. [60]
    A. Cabo-Bizet, U. Kol, L.A. Pando Zayas, I. Papadimitriou and V. Rathee, Entropy functional and the holographic attractor mechanism, arXiv:1712.01849 [INSPIRE].
  61. [61]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].
  62. [62]
    J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev. D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].
  63. [63]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    A. Guarino and O. Varela, Consistent \( \mathcal{N}=8 \) truncation of massive IIA on S 6, JHEP 12 (2015) 020 [arXiv:1509.02526] [INSPIRE].
  65. [65]
    O. Varela, AdS 4 solutions of massive IIA from dyonic ISO(7) supergravity, JHEP 03 (2016) 071 [arXiv:1509.07117] [INSPIRE].
  66. [66]
    A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02 (2016) 079 [arXiv:1508.04432] [INSPIRE].
  67. [67]
    D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].
  69. [69]
    L.J. Romans, Massive N=2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].
  70. [70]
    K. Pilch, A. Tyukov and N.P. Warner, \( \mathcal{N}=2 \) Supersymmetric Janus Solutions and Flows: From Gauged Supergravity to M-theory, JHEP 05 (2016) 005 [arXiv:1510.08090] [INSPIRE].
  71. [71]
    K. Pilch, A. Tyukov and N.P. Warner, Flowing to Higher Dimensions: A New Strongly-Coupled Phase on M2 Branes, JHEP 11 (2015) 170 [arXiv:1506.01045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A New infinite class of Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2004) 987 [hep-th/0403038] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    J.P. Ang, M. Roček and J. Schulman, Kähler-Einstein and Kähler scalar flat supermanifolds, arXiv:1605.03245 [INSPIRE].
  74. [74]
    O.A.P. Mac Conamhna and E. O Colgain, Supersymmetric wrapped membranes, AdS 2 spaces and bubbling geometries, JHEP 03 (2007) 115 [hep-th/0612196] [INSPIRE].
  75. [75]
    A. Donos, J.P. Gauntlett and N. Kim, AdS Solutions Through Transgression, JHEP 09 (2008) 021 [arXiv:0807.4375] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    M.T. Anderson, C. Beem, N. Bobev and L. Rastelli, Holographic Uniformization, Commun. Math. Phys. 318 (2013) 429 [arXiv:1109.3724] [INSPIRE].
  77. [77]
    D. Martelli and J. Sparks, Notes on toric Sasaki-Einstein seven-manifolds and AdS 4 /CF T 3, JHEP 11 (2008) 016 [arXiv:0808.0904] [INSPIRE].
  78. [78]
    N. Halmagyi, M. Petrini and A. Zaffaroni, BPS black holes in AdS 4 from M-theory, JHEP 08 (2013) 124 [arXiv:1305.0730] [INSPIRE].
  79. [79]
    D. Cassani, P. Koerber and O. Varela, All homogeneous N = 2 M-theory truncations with supersymmetric AdS4 vacua, JHEP 11 (2012) 173 [arXiv:1208.1262] [INSPIRE].
  80. [80]
    A. Amariti and C. Toldo, Betti multiplets, flows across dimensions and c-extremization, JHEP 07 (2017) 040 [arXiv:1610.08858] [INSPIRE].
  81. [81]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].
  82. [82]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].
  83. [83]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].
  84. [84]
    N. Halmagyi, BPS Black Hole Horizons in N = 2 Gauged Supergravity, JHEP 02 (2014) 051 [arXiv:1308.1439] [INSPIRE].
  85. [85]
    A. Sen, Logarithmic Corrections to N = 2 Black Hole Entropy: An Infrared Window into the Microstates, Gen. Rel. Grav. 44 (2012) 1207 [arXiv:1108.3842] [INSPIRE].
  86. [86]
    M. Baggio, N. Halmagyi, D.R. Mayerson, D. Robbins and B. Wecht, Higher Derivative Corrections and Central Charges from Wrapped M5-branes, JHEP 12 (2014) 042 [arXiv:1408.2538] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    K. Hristov, S. Katmadas and I. Lodato, Higher derivative corrections to BPS black hole attractors in 4d gauged supergravity, JHEP 05 (2016) 173 [arXiv:1603.00039] [INSPIRE].
  88. [88]
    S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A One-Loop Test of Quantum Supergravity, Class. Quant. Grav. 31 (2014) 015012 [arXiv:1210.6057] [INSPIRE].
  89. [89]
    D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  2. 2.INFN, sezione di Milano-BicoccaMilanoItaly
  3. 3.Instituut voor Theoretische Fysica, KU LeuvenLeuvenBelgium
  4. 4.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations