Advertisement

Journal of High Energy Physics

, 2018:41 | Cite as

Ultraviolet properties of the self-dual Yang-Mills theory

  • Andrey Losev
  • Igor Polyubin
  • Alexei Rosly
Open Access
Regular Article - Theoretical Physics
  • 77 Downloads

Abstract

We compute the ultraviolet divergences in the self-dual Yang-Mills theory, both in the purely perturbative (zero instanton charge) and topologically non-trivial sectors. It is shown in particular that the instanton measure is precisely the same as the one-loop result in the standard Yang-Mills theory.

Keywords

Conformal Field Theory Gauge Symmetry Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V.I. Arnold, A.N. Varchenko and S.M. Gusein-Zade, Singularities of Differentiable Maps, Volume 2: Monodromy and Asymptotics of Integrals, Birkhäuser Boston (2012), pp. 492; Nauka Moscow (1984), pp. 335 (in Russian).Google Scholar
  2. [2]
    M.F. Atiyah, N.J. Hitchin and I.M. Singer, Selfduality in Four-Dimensional Riemannian Geometry, Proc. Roy. Soc. Lond. A 362 (1978) 425 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Cangemi, Selfdual Yang-Mills theory and one-loop like maximally helicity violating multi-gluon amplitudes, Nucl. Phys. B 484 (1997) 521 [hep-th/9605208] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Cangemi, Selfduality and maximally helicity violating QCD amplitudes, Int. J. Mod. Phys. A 12 (1997) 1215 [hep-th/9610021] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    G. Chalmers and W. Siegel, The selfdual sector of QCD amplitudes, Phys. Rev. D 54 (1996) 7628 [hep-th/9606061] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Daniel, The operators governing quantum fluctuations of Yang-Mills multi-instantons on S 4 and their seeley coefficients, Commun. Math. Phys. 73 (1980) 95 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: A New method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E. Frenkel, A. Losev and N. Nekrasov, Instantons beyond topological theory. I, hep-th/0610149 [INSPIRE].
  9. [9]
    E. Frenkel, A. Losev and N. Nekrasov, Instantons beyond topological theory II, arXiv:0803.3302 [INSPIRE].
  10. [10]
    C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill International Book Co. New York (1980), pp. 705.Google Scholar
  11. [11]
    K. Krasnov, Self-Dual Gravity, Class. Quant. Grav. 34 (2017) 095001 [arXiv:1610.01457] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V.N. Romanov and A.S. Schwarz, Anomalies and Elliptic Operators, Theor. Math. Phys. 41 (1979) 967 [Teor. Mat. Fiz. 41 (1979) 190].Google Scholar
  14. [14]
    A.S. Schwarz, Instantons and fermions in the field of instanton, Commun. Math. Phys. 64 (1979) 233 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A.S. Schwarz, Elliptic operators in quantum field theory (in Russian), in Current problems in mathematics, Vol. 17, VINITI Moscow (1981), pp. 113-173.Google Scholar
  16. [16]
    R.T. Seeley, Integro-differential operators on vector bundles, Trans. Am. Math. Soc. 117 (1965) 167.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M.A. Shifman and A.I. Vainshtein, On holomorphic dependence and infrared effects in supersymmetric gauge theories, Nucl. Phys. B 359 (1991) 571 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, ABC’s of Instantons, Sov. Phys. Usp. 25 (1982) 195 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Andrey Losev
    • 1
    • 2
    • 3
  • Igor Polyubin
    • 4
    • 5
    • 3
  • Alexei Rosly
    • 5
    • 2
    • 6
    • 7
    • 3
  1. 1.Federal Science Centre “Science Research Institute of System Analysis”Russian Science Academy (GNU FNC NIISI RAN)MoscowRussia
  2. 2.National Research University Higher School of Economics (HSE)MoscowRussia
  3. 3.Moscow Institute of Physics and Technology (MIPT)DolgoprudnyRussia
  4. 4.Landau Institute for Theoretical Physics (ITP)ChernogolovkaRussia
  5. 5.Alikhanov Institute for Theoretical and Experimental Physics (ITEP)MoscowRussia
  6. 6.Institute for Information Transmission Problems (IITP)MoscowRussia
  7. 7.Skolkovo Institute of Science and Technology (Skoltech)MoscowRussia

Personalised recommendations