Journal of High Energy Physics

, 2018:18 | Cite as

Spinors fields in co-dimension one braneworlds

  • W.M. MendesEmail author
  • G. Alencar
  • R.R. Landim
Open Access
Regular Article - Theoretical Physics


In this work we analyze the zero mode localization and resonances of 1/2−spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η1, (ii) a Yukawa-dilaton coupling with two parameters η2 and λ and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D = 5 do not induces resonances but when we consider D = 10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.


Field Theories in Higher Dimensions Large Extra Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Salvio, Aspects of physics with two extra dimensions, hep-th/0701020 [INSPIRE].
  2. [2]
    T. Kaluza, On the Problem of Unity in Physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 (1921) 966 [INSPIRE].
  3. [3]
    J. Polchinski, String Theory, Vol. 1, Cambrige University Press (1998).Google Scholar
  4. [4]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  5. [5]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    B. Bajc and G. Gabadadze, Localization of matter and cosmological constant on a brane in anti-de Sitter space, Phys. Lett. B 474 (2000) 282 [hep-th/9912232] [INSPIRE].
  8. [8]
    A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [INSPIRE].
  9. [9]
    G. Alencar, R.R. Landim, M.O. Tahim and R.N. Costa Filho, Gauge Field Localization on the Brane Through Geometrical Coupling, Phys. Lett. B 739 (2014) 125 [arXiv:1409.4396] [INSPIRE].
  10. [10]
    G. Alencar, C.R. Muniz, R.R. Landim, I.C. Jardim and R.N. Costa Filho, Photon mass as a probe to extra dimensions, Phys. Lett. B 759 (2016) 138 [arXiv:1511.03608] [INSPIRE].
  11. [11]
    G. Alencar, Hidden conformal symmetry in Randall-Sundrum 2 model: Universal fermion localization by torsion, Phys. Lett. B 773 (2017) 601 [arXiv:1705.09331] [INSPIRE].
  12. [12]
    G. Alencar, Hidden Conformal Symmetry of sine-Gordon Braneworld Scenarios, arXiv:1707.04583 [INSPIRE].
  13. [13]
    R.R. Landim, G. Alencar, M.O. Tahim, M.A.M. Gomes and R.N. Costa Filho, On resonances of q-forms in thick p-branes, EPL 97 (2012) 20003 [arXiv:1010.1548] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Alencar, I.C. Jardim and R.R. Landim, pforms Non-minimally Coupled to Gravity in Randall-Sundrum Scenarios, arXiv:1801.06098 [INSPIRE].
  15. [15]
    Y.-X. Liu, J. Yang, Z.-H. Zhao, C.-E. Fu and Y.-S. Duan, Fermion Localization and Resonances on A de Sitter Thick Brane, Phys. Rev. D 80 (2009) 065019 [arXiv:0904.1785] [INSPIRE].
  16. [16]
    Z.-H. Zhao, Y.-X. Liu and H.-T. Li, Fermion localization on asymmetric two-field thick branes, Class. Quant. Grav. 27 (2010) 185001 [arXiv:0911.2572] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H.-T. Li, Y.-X. Liu, Z.-H. Zhao and H. Guo, Fermion Resonances on a Thick Brane with a Piecewise Warp Factor, Phys. Rev. D 83 (2011) 045006 [arXiv:1006.4240] [INSPIRE].
  18. [18]
    C.A.S. Almeida, M.M. Ferreira, Jr., A.R. Gomes and R. Casana, Fermion localization and resonances on two-field thick branes, Phys. Rev. D 79 (2009) 125022 [arXiv:0901.3543] [INSPIRE].
  19. [19]
    N. Barbosa-Cendejas, D. Malagón-Morejón and R.R. Mora-Luna, Universal spin-1/2 fermion field localization on a 5D braneworld, Gen. Rel. Grav. 47 (2015) 77 [arXiv:1503.07900] [INSPIRE].
  20. [20]
    R. Jackiw and C. Rebbi, Solitons with Fermion Number 1/2, Phys. Rev. D 13 (1976) 3398 [INSPIRE].
  21. [21]
    Y.-X. Liu, Z.-G. Xu, F.-W. Chen and S.-W. Wei, New localization mechanism of fermions on braneworlds, Phys. Rev. D 89 (2014) 086001 [arXiv:1312.4145] [INSPIRE].
  22. [22]
    Y.-Y. Li, Y.-P. Zhang, W.-D. Guo and Y.-X. Liu, Fermion localization mechanism with derivative geometrical coupling on branes, Phys. Rev. D 95 (2017) 115003 [arXiv:1701.02429] [INSPIRE].
  23. [23]
    R.R. Landim, G. Alencar, M.O. Tahim and R.N. Costa Filho, A Transfer Matrix Method for Resonances in Randall-Sundrum Models, JHEP 08 (2011) 071 [arXiv:1105.5573] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    R.R. Landim, G. Alencar, M.O. Tahim and R.N. Costa Filho, A Transfer Matrix Method for Resonances in Randall-Sundrum Models II: The Deformed Case, JHEP 02 (2012) 073 [arXiv:1110.5855] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    G. Alencar, R.R. Landim, M.O. Tahim and R.N.C. Filho, A Transfer Matrix Method for Resonances in Randall-Sundrum Models III: An analytical comparison, JHEP 01 (2013) 050 [arXiv:1207.3054] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    Y.-b. Kim, C.O. Lee, I.-b. Lee and J.-J. Lee, Brane world of warp geometry: An Introductory review, J. Korean Astron. Soc. 37 (2004) 1 [hep-th/0307023] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Nakahara, Geometry, topology and physics, CRC Press (2003).Google Scholar
  28. [28]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].
  29. [29]
    W.T. Cruz, M.O. Tahim and C.A.S. Almeida, Gauge field localization on a dilatonic deformed brane, Phys. Lett. B 686 (2010) 259 [INSPIRE].
  30. [30]
    G. Alencar, R.R. Landim, M.O. Tahim, C.R. Muniz and R.N. Costa Filho, Antisymmetric Tensor Fields in Randall Sundrum Thick Branes, Phys. Lett. B 693 (2010) 503 [arXiv:1008.0678] [INSPIRE].
  31. [31]
    C.-E. Fu, Y.-X. Liu and H. Guo, Bulk matter fields on two-field thick branes, Phys. Rev. D 84 (2011) 044036 [arXiv:1101.0336] [INSPIRE].
  32. [32]
    D. Bazeia, L. Losano and J.M.C. Malbouisson, Deformed defects, Phys. Rev. D 66 (2002) 101701 [hep-th/0209027] [INSPIRE].
  33. [33]
    E. Cartan, The theory of spinors, Dover, New York, NY, U.S.A. (1966).Google Scholar
  34. [34]
    J. Polchinski, String Theory, Vol. 2, Cambrige University Press (1998).Google Scholar
  35. [35]
    J.-H. Park, Lecture note on clifford algebra, (2005).

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Grupo de Física Teórica (GFT), Universidade Estadual do CearáFortaleza-CEBrazil

Personalised recommendations