Journal of High Energy Physics

, 2017:136

Yukawa sector of minimal SO(10) unification

Open Access
Regular Article - Theoretical Physics

Abstract

We show that in SO(10) models, a Yukawa sector consisting of a real 10H, a real 120H and a complex 126H of Higgs fields can provide a realistic fit to all fermion masses and mixings, including the neutrino sector. Although the group theory of SO(10) demands that the 10H and 120H be real, most constructions complexify these fields and impose symmetries exterior to SO(10) to achieve predictivity. The proposed new framework with real 10H and real 120H relies only on SO(10) gauge symmetry, and yet has a limited number of Yukawa parameters. Our analysis shows that while there are restrictions on the observables, a good fit to the entire fermion spectrum can be realized. Unification of gauge couplings is achieved with an intermediate scale Pati-Salam gauge symmetry. Proton decay branching ratios are calculable, with the leading decay modes being \( p\to \overline{\nu}{\pi}^{+} \) and pe+π0.

Keywords

Beyond Standard Model GUT Neutrino Physics Quark Masses and SM Parameters 

References

  1. [1]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  2. [2]
    H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H. Georgi, H.R. Quinn and S. Weinberg, Hierarchy of Interactions in Unified Gauge Theories, Phys. Rev. Lett. 33 (1974) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Georgi, The State of the Art-Gauge Theories, in proceedings of the 1974 Meeting of the Division of Particles and Fields of the APS, Williamsburg, Virginia, 5-7 September 1974, C.E. Carlson ed., American Institute of Physics (1975) [AIP Conf. Proc. 23 (1975) 575] [INSPIRE].
  5. [5]
    H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  7. [7]
    T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, in proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan, 13-14 February 1979, A. Sawada and A. Sugamoto eds., National Lab for High Energy Physics, Tsukuba Japan (1979) [Conf. Proc. C 7902131 (1979) 95] [INSPIRE].
  8. [8]
    S. Glashow, The Future of Elementary Particle Physics, in proceedings of the Cargèse Summer Institute: Quarks and Leptons, Cargèse, France, 9-29 July 1979 [NATO Sci. Ser. B 61 (1980) 687] [INSPIRE].
  9. [9]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, in proceedings of the Supergravity Workshop, Stony Brook, New York, U.S.A., 27-28 September 1979, P. Van Niewenhuizen and D. Freeman eds., Amsterdam North-Holland (1979) [Conf. Proc. C 790927 (1979) 315] [arXiv:1306.4669] [INSPIRE].
  10. [10]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  14. [14]
    C. Wetterich, Neutrino Masses and the Scale of BL Violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  16. [16]
    T.G. Rizzo and G. Senjanović, Can There Be Low Intermediate Mass Scales in Grand Unified Theories?, Phys. Rev. Lett. 46 (1981) 1315 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T.G. Rizzo and G. Senjanović, Grand Unification and Parity Restoration at Low-Energies. 1. Phenomenology, Phys. Rev. D 24 (1981) 704 [Erratum ibid. D 25 (1982) 1447] [INSPIRE].
  18. [18]
    T.G. Rizzo and G. Senjanović, Grand Unification and Parity Restoration at Low-energies. 2. Unification Constraints, Phys. Rev. D 25 (1982) 235 [INSPIRE].
  19. [19]
    W.E. Caswell, J. Milutinović and G. Senjanović, Predictions of Left-right Symmetric Grand Unified Theories, Phys. Rev. D 26 (1982) 161 [INSPIRE].ADSGoogle Scholar
  20. [20]
    D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling Parity and SU(2)R Breaking Scales: A New Approach to Left-Right Symmetric Models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.M. Gipson and R.E. Marshak, Intermediate Mass Scales in the New SO(10) Grand Unification in the One Loop Approximation, Phys. Rev. D 31 (1985) 1705 [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Chang, R.N. Mohapatra, J. Gipson, R.E. Marshak and M.K. Parida, Experimental Tests of New SO(10) Grand Unification, Phys. Rev. D 31 (1985) 1718 [INSPIRE].ADSGoogle Scholar
  23. [23]
    N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand unification, Phys. Rev. D 46 (1993) 2261 [INSPIRE].ADSGoogle Scholar
  24. [24]
    N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand unification with two intermediate stages, Phys. Rev. D 47 (1993) 2892 [hep-ph/9211232] [INSPIRE].
  25. [25]
    S. Bertolini, L. Di Luzio and M. Malinský, Intermediate mass scales in the non-supersymmetric SO(10) grand unification: A Reappraisal, Phys. Rev. D 80 (2009) 015013 [arXiv:0903.4049] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Bertolini, L. Di Luzio and M. Malinský, On the vacuum of the minimal nonsupersymmetric SO(10) unification, Phys. Rev. D 81 (2010) 035015 [arXiv:0912.1796] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S. Bertolini, L. Di Luzio and M. Malinský, The quantum vacuum of the minimal SO(10) GUT, J. Phys. Conf. Ser. 259 (2010) 012098 [arXiv:1010.0338] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    K.S. Babu and S. Khan, Minimal nonsupersymmetric SO(10) model: Gauge coupling unification, proton decay and fermion masses, Phys. Rev. D 92 (2015) 075018 [arXiv:1507.06712] [INSPIRE].ADSGoogle Scholar
  29. [29]
    L. Gráf, M. Malinský, T. Mede and V. Susič, One-loop pseudo-Goldstone masses in the minimal SO(10) Higgs model, arXiv:1611.01021 [INSPIRE].
  30. [30]
    S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].ADSGoogle Scholar
  31. [31]
    L.E. Ibáñez and G.G. Ross, Low-Energy Predictions in Supersymmetric Grand Unified Theories, Phys. Lett. B 105 (1981) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M.B. Einhorn and D.R.T. Jones, The Weak Mixing Angle and Unification Mass in Supersymmetric SU(5), Nucl. Phys. B 196 (1982) 475 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    W.J. Marciano and G. Senjanović, Predictions of Supersymmetric Grand Unified Theories, Phys. Rev. D 25 (1982) 3092 [INSPIRE].ADSGoogle Scholar
  34. [34]
    K.S. Babu and S.M. Barr, An SO(10) solution to the puzzle of quark and lepton masses, Phys. Rev. Lett. 75 (1995) 2088 [hep-ph/9503215] [INSPIRE].
  35. [35]
    K.S. Babu, B. Bajc and S. Saad, New Class of SO(10) Models for Flavor, Phys. Rev. D 94 (2016) 015030 [arXiv:1605.05116] [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Davidson, V.P. Nair and K.C. Wali, Mixing Angles and CP Violation in the SO(10) × U(1)(pq) Model, Phys. Rev. D 29 (1984) 1513 [INSPIRE].ADSGoogle Scholar
  38. [38]
    G. Lazarides and Q. Shafi, Fermion masses and mixings in SO(10), Nucl. Phys. B 350 (1991) 179 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].
  40. [40]
    D.-G. Lee and R.N. Mohapatra, An SO(10) × S 4 scenario for naturally degenerate neutrinos, Phys. Lett. B 329 (1994) 463 [hep-ph/9403201] [INSPIRE].
  41. [41]
    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Yukawa sector in non-supersymmetric renormalizable SO(10), Phys. Rev. D 73 (2006) 055001 [hep-ph/0510139] [INSPIRE].
  42. [42]
    A.S. Joshipura and K.M. Patel, Fermion Masses in SO(10) Models, Phys. Rev. D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE].ADSGoogle Scholar
  43. [43]
    G. Altarelli and D. Meloni, A non supersymmetric SO(10) grand unified model for all the physics below M GUT, JHEP 08 (2013) 021 [arXiv:1305.1001] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Dueck and W. Rodejohann, Fits to SO(10) Grand Unified Models, JHEP 09 (2013) 024 [arXiv:1306.4468] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    B. Bajc, G. Senjanović and F. Vissani, How neutrino and charged fermion masses are connected within minimal supersymmetric SO(10), PoS(HEP2001)198 [hep-ph/0110310] [INSPIRE].
  46. [46]
    T. Fukuyama and N. Okada, Neutrino oscillation data versus minimal supersymmetric SO(10) model, JHEP 11 (2002) 011 [hep-ph/0205066] [INSPIRE].
  47. [47]
    B. Bajc, G. Senjanović and F. Vissani, b-τ unification and large atmospheric mixing: A Case for noncanonical seesaw, Phys. Rev. Lett. 90 (2003) 051802 [hep-ph/0210207] [INSPIRE].
  48. [48]
    H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10), b-τ unification and large neutrino mixings, Phys. Lett. B 570 (2003) 215 [hep-ph/0303055] [INSPIRE].
  49. [49]
    H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP-violation, Phys. Rev. D 68 (2003) 115008 [hep-ph/0308197] [INSPIRE].
  50. [50]
    K.S. Babu and C. Macesanu, Neutrino masses and mixings in a minimal SO(10) model, Phys. Rev. D 72 (2005) 115003 [hep-ph/0505200] [INSPIRE].
  51. [51]
    S. Bertolini, T. Schwetz and M. Malinský, Fermion masses and mixings in SO(10) models and the neutrino challenge to SUSY GUTs, Phys. Rev. D 73 (2006) 115012 [hep-ph/0605006] [INSPIRE].
  52. [52]
    B. Bajc, I. Doršner and M. Nemevšek, Minimal SO(10) splits supersymmetry, JHEP 11 (2008) 007 [arXiv:0809.1069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    T. Fukuyama, K. Ichikawa and Y. Mimura, Revisiting fermion mass and mixing fits in the minimal SUSY SO(10) GUT, Phys. Rev. D 94 (2016) 075018 [arXiv:1508.07078] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Bertolini, M. Frigerio and M. Malinský, Fermion masses in SUSY SO(10) with type-II seesaw: A Non-minimal predictive scenario, Phys. Rev. D 70 (2004) 095002 [hep-ph/0406117] [INSPIRE].
  55. [55]
    W.-M. Yang and Z.-G. Wang, Fermion masses and flavor mixing in a supersymmetric SO(10) model, Nucl. Phys. B 707 (2005) 87 [hep-ph/0406221] [INSPIRE].
  56. [56]
    B. Dutta, Y. Mimura and R.N. Mohapatra, Suppressing proton decay in the minimal SO(10) model, Phys. Rev. Lett. 94 (2005) 091804 [hep-ph/0412105] [INSPIRE].
  57. [57]
    C.S. Aulakh and S.K. Garg, The New Minimal Supersymmetric GUT: Spectra, RG analysis and Fermion Fits, Nucl. Phys. B 857 (2012) 101 [arXiv:0807.0917] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    M.-C. Chen and K.T. Mahanthappa, Fermion masses and mixing and CP-violation in SO(10) models with family symmetries, Int. J. Mod. Phys. A 18 (2003) 5819 [hep-ph/0305088] [INSPIRE].
  59. [59]
    W. Grimus and H. Kuhbock, Fermion masses and mixings in a renormalizable SO(10) × Z 2 GUT, Phys. Lett. B 643 (2006) 182 [hep-ph/0607197] [INSPIRE].
  60. [60]
    Y. Cai and H.-B. Yu, A SO(10) GUT Model with S4 Flavor Symmetry, Phys. Rev. D 74 (2006) 115005 [hep-ph/0608022] [INSPIRE].
  61. [61]
    A. Albaid, Flavor Violation in a Minimal SO(10) × A 4 SUSY GUT, Int. J. Mod. Phys. A 27 (2012) 1250005 [arXiv:1106.4070] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  62. [62]
    P.M. Ferreira, W. Grimus, D. Jurčiukonis and L. Lavoura, Flavour symmetries in a renormalizable SO(10) model, Nucl. Phys. B 906 (2016) 289 [arXiv:1510.02641] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    E. Witten, Neutrino Masses in the Minimal O(10) Theory, Phys. Lett. B 91 (1980) 81 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    B. Bajc and G. Senjanović, Radiative seesaw: A Case for split supersymmetry, Phys. Lett. B 610 (2005) 80 [hep-ph/0411193] [INSPIRE].
  65. [65]
    G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  66. [66]
    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].
  68. [68]
    H. Arason et al., Renormalization group study of the standard model and its extensions. 1. The Standard model, Phys. Rev. D 46 (1992) 3945 [INSPIRE].
  69. [69]
    K.S. Babu, Renormalization Group Analysis of the Kobayashi-Maskawa Matrix, Z. Phys. C 35 (1987) 69 [INSPIRE].ADSGoogle Scholar
  70. [70]
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A.M. Rotunno, Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  71. [71]
    K.S. Babu, C.N. Leung and J.T. Pantaleone, Renormalization of the neutrino mass operator, Phys. Lett. B 319 (1993) 191 [hep-ph/9309223] [INSPIRE].
  72. [72]
    S. Antusch, M. Drees, J. Kersten, M. Lindner and M. Ratz, Neutrino mass operator renormalization revisited, Phys. Lett. B 519 (2001) 238 [hep-ph/0108005] [INSPIRE].
  73. [73]
    H. Georgi, Towards a Grand Unified Theory of Flavor, Nucl. Phys. B 156 (1979) 126 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    F. del Aguila and L.E. Ibáñez, Higgs Bosons in SO(10) and Partial Unification, Nucl. Phys. B 177 (1981) 60 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    R.N. Mohapatra and G. Senjanović, Higgs Boson Effects in Grand Unified Theories, Phys. Rev. D 27 (1983) 1601 [INSPIRE].ADSGoogle Scholar
  76. [76]
    D.R.T. Jones, The Two Loop β-function for a G 1 × G 2 Gauge Theory, Phys. Rev. D 25 (1982) 581 [INSPIRE].ADSGoogle Scholar
  77. [77]
    Super-Kamiokande collaboration, H. Nishino et al., Search for Nucleon Decay into Charged Anti-lepton plus Meson in Super-Kamiokande I and II, Phys. Rev. D 85 (2012) 112001 [arXiv:1203.4030] [INSPIRE].
  78. [78]
    M. Machacek, The Decay Modes of the Proton, Nucl. Phys. B 159 (1979) 37 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    P. Fileviez Perez, Fermion mixings versus D = 6 proton decay, Phys. Lett. B 595 (2004) 476 [hep-ph/0403286] [INSPIRE].
  80. [80]
    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].
  81. [81]
    Y. Aoki, E. Shintani and A. Soni, Proton decay matrix elements on the lattice, Phys. Rev. D 89 (2014) 014505 [arXiv:1304.7424] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of PhysicsOklahoma State UniversityStillwaterU.S.A.
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations