Advertisement

Journal of High Energy Physics

, 2017:122 | Cite as

A new approach to non-Abelian hydrodynamics

  • Jose J. Fernández-Melgarejo
  • Soo-Jong Rey
  • Piotr Surówka
Open Access
Regular Article - Theoretical Physics

Abstract

We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

Keywords

Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) Holography and quark-gluon plasmas 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    U.W. Heinz, Kinetic theory for nonabelian plasmas, Phys. Rev. Lett. 51 (1983) 351 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    U.W. Heinz, Quark-gluon transport theory. Part 1. The classical theory, Annals Phys. 161 (1985) 48 [INSPIRE].
  3. [3]
    S. Mrówczynski, Chromohydrodynamics in the quark plasma, Phys. Lett. B 202 (1988) 568 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D.F. Litim and C. Manuel, Semiclassical transport theory for nonabelian plasmas, Phys. Rept. 364 (2002) 451 [hep-ph/0110104] [INSPIRE].
  5. [5]
    C. Manuel and S. Mrówczynski, Local equilibrium of the quark gluon plasma, Phys. Rev. D 68 (2003) 094010 [hep-ph/0306209] [INSPIRE].
  6. [6]
    C. Manuel and S. Mrówczynski, Chromo-hydrodynamic approach to the unstable quark-gluon plasma, Phys. Rev. D 74 (2006) 105003 [hep-ph/0606276] [INSPIRE].
  7. [7]
    J. Peralta-Ramos and E. Calzetta, Effective dynamics of a nonabelian plasma out of equilibrium, Phys. Rev. D 86 (2012) 125024 [arXiv:1208.2715] [INSPIRE].ADSGoogle Scholar
  8. [8]
    E. Calzetta, Non-abelian hydrodynamics and heavy ion collisions, AIP Conf. Proc. 1578 (2014) 74 [arXiv:1311.1845] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.K. Wong, Field and particle equations for the classical Yang-Mills field and particles with isotopic spin, Nuovo Cim. A 65 (1970) 689 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.D. Holm and B.A. Kupershmidt, Relativistic chromodynamics and Yang-Mills Vlasov plasma, Phys. Lett. A 105 (1984) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Jackiw, V.P. Nair and S.-Y. Pi, Chern-Simons reduction and nonabelian fluid mechanics, Phys. Rev. D 62 (2000) 085018 [hep-th/0004084] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    B. Bistrovic, R. Jackiw, H. Li, V.P. Nair and S.Y. Pi, Nonabelian fluid dynamics in Lagrangian formulation, Phys. Rev. D 67 (2003) 025013 [hep-th/0210143] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D 91 (2015) 105031 [arXiv:1305.3670] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    F.M. Haehl, R. Loganayagam and M. Rangamani, Topological σ-models & dissipative hydrodynamics, JHEP 04 (2016) 039 [arXiv:1511.07809] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, arXiv:1511.03646 [INSPIRE].
  16. [16]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surówka, Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D.T. Son and P. Surówka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational anomaly and transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    R. Loganayagam and P. Surówka, Anomaly/transport in an ideal Weyl gas, JHEP 04 (2012) 097 [arXiv:1201.2812] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Torabian and H.-U. Yee, Holographic nonlinear hydrodynamics from AdS/CFT with multiple/non-abelian symmetries, JHEP 08 (2009) 020 [arXiv:0903.4894] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    C. Eling, Y. Neiman and Y. Oz, Holographic non-abelian charged hydrodynamics from the dynamics of null horizons, JHEP 12 (2010) 086 [arXiv:1010.1290] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    C.P. Herzog, K.-W. Huang and R. Vaz, Linear resistivity from non-abelian black holes, JHEP 11 (2014) 066 [arXiv:1405.3714] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.A. Font, M.A. Miller, W.-M. Suen and M. Tobias, Three-dimensional numerical general relativistic hydrodynamics. 1. Formulations, methods and code tests, Phys. Rev. D 61 (2000) 044011 [gr-qc/9811015] [INSPIRE].
  28. [28]
    M.H. Goroff, B. Grinstein, S.J. Rey and M.B. Wise, Coupling of modes of cosmological mass density fluctuations, Astrophys. J. 311 (1986) 6 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    B. Grinstein, H.D. Politzer, S.J. Rey and M.B. Wise, Interpretation of large scale deviations from the Hubble flow, Astrophys. J. 314 (1987) 431 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Jackiw, V.P. Nair, S.Y. Pi and A.P. Polychronakos, Perfect fluid theory and its extensions, J. Phys. A 37 (2004) R327 [hep-ph/0407101] [INSPIRE].
  31. [31]
    J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87 (2015) 1213.ADSCrossRefGoogle Scholar
  32. [32]
    B. Leurs, Z. Nazario, D. Santiago and J. Zaanen, Non-abelian hydrodynamics and the flow of spin in spin-orbit coupled substances, Ann. Phys. 323 (2008) 907 [Erratum ibid. 324 (2009) 1821] [arXiv:0705.2953].
  33. [33]
    T. Kaluza, On the problem of unity in physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 (1921) 966 [INSPIRE].Google Scholar
  34. [34]
    O. Klein, Quantum theory and five-dimensional theory of relativity (in German and English), Z. Phys. 37 (1926) 895 [INSPIRE].
  35. [35]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    Y.M. Cho and P.G.O. Freund, Nonabelian gauge fields in Nambu-Goldstone fields, Phys. Rev. D 12 (1975) 1711 [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Di Dato, Kaluza-Klein reduction of relativistic fluids and their gravity duals, JHEP 12 (2013) 087 [arXiv:1307.8365] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Roest, M-theory and gauged supergravities, Fortsch. Phys. 53 (2005) 119 [hep-th/0408175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
  40. [40]
    G. Dibitetto, Gauged supergravities and the physics of extra dimensions, Ph.D. thesis, Groningen U., Groningen The Netherlands, (2012) [arXiv:1210.2301] [INSPIRE].
  41. [41]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, JHEP 05 (2014) 147 [arXiv:1105.3733] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    G. Compère, P. McFadden, K. Skenderis and M. Taylor, The holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    H.-S. Liu, H. Lü and C.N. Pope, Magnetically-charged black branes and viscosity/entropy ratios, JHEP 12 (2016) 097 [arXiv:1602.07712] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    B. Gouteraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    H. Lü, C.N. Pope and E. Sezgin, SU(2) reduction of six-dimensional (1, 0) supergravity, Nucl. Phys. B 668 (2003) 237 [hep-th/0212323] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Jose J. Fernández-Melgarejo
    • 1
  • Soo-Jong Rey
    • 2
    • 3
    • 4
  • Piotr Surówka
    • 1
    • 5
  1. 1.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.
  2. 2.School of Physics & Astronomy and Center for Theoretical PhysicsSeoul National UniversitySeoulKorea
  3. 3.Department of Fundamental SciencesUniversity of Science and TechnologyDaejeonKorea
  4. 4.Center for Gauge, Gravity & Strings, Institute for Basic SciencesDaejeonKorea
  5. 5.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MunichGermany

Personalised recommendations