Journal of High Energy Physics

, 2017:119 | Cite as

Superheavy thermal dark matter and primordial asymmetries

  • Joseph Bramante
  • James Unwin
Open Access
Regular Article - Theoretical Physics


The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 1010 GeV. We proceed to study superheavy asym-metric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453] [INSPIRE].
  3. [3]
    M. Dine and A. Kusenko, The origin of the matter-antimatter asymmetry, Rev. Mod. Phys. 76 (2003) 1 [hep-ph/0303065] [INSPIRE].
  4. [4]
    T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].
  5. [5]
    B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4-D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].
  6. [6]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].
  7. [7]
    K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Bramante and F. Elahi, Higgs portals to pulsar collapse, Phys. Rev. D 91 (2015) 115001 [arXiv:1504.04019] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Bramante and T. Linden, Detecting Dark Matter with Imploding Pulsars in the Galactic Center, Phys. Rev. Lett. 113 (2014) 191301 [arXiv:1405.1031] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Bramante, Dark matter ignition of type-IA supernovae, Phys. Rev. Lett. 115 (2015) 141301 [arXiv:1505.07464] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P.W. Graham, S. Rajendran and J. Varela, Dark Matter Triggers of Supernovae, Phys. Rev. D 92 (2015) 063007 [arXiv:1505.04444] [INSPIRE].ADSGoogle Scholar
  12. [12]
    K.M. Zurek, Asymmetric Dark Matter: Theories, Signatures and Constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A.D. Linde, The New Mechanism of Baryogenesis and the Inflationary Universe, Phys. Lett. B 160 (1985) 243 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  16. [16]
    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].
  17. [17]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].
  18. [18]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  19. [19]
    R.J. Scherrer and M.S. Turner, On the Relic, Cosmic Abundance of Stable Weakly Interacting Massive Particles, Phys. Rev. D 33 (1986) 1585 [Erratum ibid. D 34 (1986) 3263] [INSPIRE].
  20. [20]
    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].ADSzbMATHGoogle Scholar
  21. [21]
    L. Hui and E.D. Stewart, Superheavy dark matter from thermal inflation, Phys. Rev. D 60 (1999) 023518 [hep-ph/9812345] [INSPIRE].
  22. [22]
    T. Asaka, M. Kawasaki and T. Yanagida, Superheavy dark matter and thermal inflation, Phys. Rev. D 60 (1999) 103518 [hep-ph/9904438] [INSPIRE].
  23. [23]
    D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic Dark Matter, JCAP 05 (2010) 021 [arXiv:0909.0753] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Hardy, R. Lasenby, J. March-Russell and S.M. West, Big Bang Synthesis of Nuclear Dark Matter, JHEP 06 (2015) 011 [arXiv:1411.3739] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    I.F.M. Albuquerque and L. Baudis, Direct detection constraints on superheavy dark matter, Phys. Rev. Lett. 90 (2003) 221301 [Erratum ibid. 91 (2003) 229903] [astro-ph/0301188] [INSPIRE].
  26. [26]
    I.F.M. Albuquerque, L. Hui and E.W. Kolb, High-energy neutrinos from superheavy dark matter annihilation, Phys. Rev. D 64 (2001) 083504 [hep-ph/0009017] [INSPIRE].
  27. [27]
    P. Blasi, R. Dick and E.W. Kolb, Ultrahigh-energy cosmic rays from annihilation of superheavy dark matter, Astropart. Phys. 18 (2002) 57 [astro-ph/0105232] [INSPIRE].
  28. [28]
    T. Lin, H.-B. Yu and K.M. Zurek, On Symmetric and Asymmetric Light Dark Matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. March-Russell, J. Unwin and S.M. West, Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Randall, J. Scholtz and J. Unwin, Flooded Dark Matter and S Level Rise, JHEP 03 (2016) 011 [arXiv:1509.08477] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: Baryon-Dark Matter Coincidence from Branchings in Moduli Decay, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286] [INSPIRE].ADSGoogle Scholar
  32. [32]
    G. Kane, J. Shao, S. Watson and H.-B. Yu, The Baryon-Dark Matter Ratio Via Moduli Decay After Affleck-Dine Baryogenesis, JCAP 11 (2011) 012 [arXiv:1108.5178] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Davoudiasl, D. Hooper and S.D. McDermott, Inflatable Dark Matter, Phys. Rev. Lett. 116 (2016) 031303 [arXiv:1507.08660] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    H. Iminniyaz, M. Drees and X. Chen, Relic Abundance of Asymmetric Dark Matter, JCAP 07 (2011) 003 [arXiv:1104.5548] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Berlin, D. Hooper and G. Krnjaic, PeV-Scale Dark Matter as a Thermal Relic of a Decoupled Sector, Phys. Lett. B 760 (2016) 106 [arXiv:1602.08490] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Berlin, D. Hooper and G. Krnjaic, Thermal Dark Matter From A Highly Decoupled Sector, Phys. Rev. D 94 (2016) 095019 [arXiv:1609.02555] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Wainwright and S. Profumo, The impact of a strongly first-order phase transition on the abundance of thermal relics, Phys. Rev. D 80 (2009) 103517 [arXiv:0909.1317] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C. Cheung and K.M. Zurek, Affleck-Dine Cogenesis, Phys. Rev. D 84 (2011) 035007 [arXiv:1105.4612] [INSPIRE].ADSGoogle Scholar
  40. [40]
    N.F. Bell, K. Petraki, I.M. Shoemaker and R.R. Volkas, Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism, Phys. Rev. D 84 (2011) 123505 [arXiv:1105.3730] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Kamada and M. Yamaguchi, Asymmetric Dark Matter from Spontaneous Cogenesis in the Supersymmetric Standard Model, Phys. Rev. D 85 (2012) 103530 [arXiv:1201.2636] [INSPIRE].ADSGoogle Scholar
  42. [42]
    D. Delepine, C. Martinez and L.A. Urena-Lopez, Complex Hybrid Inflation and Baryogenesis, Phys. Rev. Lett. 98 (2007) 161302 [hep-ph/0609086] [INSPIRE].
  43. [43]
    M.P. Hertzberg and J. Karouby, Generating the Observed Baryon Asymmetry from the Inflaton Field, Phys. Rev. D 89 (2014) 063523 [arXiv:1309.0010] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D.J.H. Chung, E.W. Kolb and A. Riotto, Superheavy dark matter, Phys. Rev. D 59 (1999) 023501 [hep-ph/9802238] [INSPIRE].
  45. [45]
    D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, On the gravitational production of superheavy dark matter, Phys. Rev. D 64 (2001) 043503 [hep-ph/0104100] [INSPIRE].
  46. [46]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].
  47. [47]
    L.J. Hall and Y. Nomura, A Finely-Predicted Higgs Boson Mass from A Finely-Tuned Wea Scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, The Anthropic principle and the mass scale of the standard model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].
  49. [49]
    D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the ΩbDM puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [INSPIRE].
  50. [50]
    K. Blum, A. Efrati, Y. Grossman, Y. Nir and A. Riotto, Asymmetric Higgsino Dark Matter, Phys. Rev. Lett. 109 (2012) 051302 [arXiv:1201.2699] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    K. Benakli, J.R. Ellis and D.V. Nanopoulos, Natural candidates for superheavy dark matter in string and M-theory, Phys. Rev. D 59 (1999) 047301 [hep-ph/9803333] [INSPIRE].
  52. [52]
    T. Banks, J.D. Mason and D. O’Neil, A dark matter candidate with new strong interactions, Phys. Rev. D 72 (2005) 043530 [hep-ph/0506015] [INSPIRE].
  53. [53]
    J. Unwin, R-symmetric High Scale Supersymmetry, Phys. Rev. D 86 (2012) 095002 [arXiv:1210.4936] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Hebecker, A.K. Knochel and T. Weigand, A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations, JHEP 06 (2012) 093 [arXiv:1204.2551] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L.E. Ibáñez, F. Marchesano, D. Regalado and I. Valenzuela, The Intermediate Scale MSSM, the Higgs Mass and F-theory Unification, JHEP 07 (2012) 195 [arXiv:1206.2655] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    IceCube collaboration, M.G. Aartsen et al., Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, Phys. Rev. Lett. 113 (2014) 101101 [arXiv:1405.5303] [INSPIRE].
  57. [57]
    A. Esmaili and P.D. Serpico, Are IceCube neutrinos unveiling PeV-scale decaying dark matter?, JCAP 11 (2013) 054 [arXiv:1308.1105] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    B. Feldstein, A. Kusenko, S. Matsumoto and T.T. Yanagida, Neutrinos at IceCube from Heavy Decaying Dark Matter, Phys. Rev. D 88 (2013) 015004 [arXiv:1303.7320] [INSPIRE].ADSGoogle Scholar
  59. [59]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Heavy right-handed neutrino dark matter in left-right models, arXiv:1610.05738 [INSPIRE].
  60. [60]
    H. Pagels and J.R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Weinberg, Cosmological Constraints on the Scale of Supersymmetry Breaking, Phys. Rev. Lett. 48 (1982) 1303 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M.Yu. Khlopov and A.D. Linde, Is It Easy to Save the Gravitino?, Phys. Lett. B 138 (1984) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    P.J. Steinhardt and M.S. Turner, Saving the Invisible Axion, Phys. Lett. B 129 (1983) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    K. Rajagopal, M.S. Turner and F. Wilczek, Cosmological implications of axinos, Nucl. Phys. B 358 (1991) 447 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Preskill, Cosmological Production of Superheavy Magnetic Monopoles, Phys. Rev. Lett. 43 (1979) 1365 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of PhysicsUniversity of Illinois at ChicagoChicagoU.S.A.

Personalised recommendations