Advertisement

Journal of High Energy Physics

, 2017:63 | Cite as

Revisiting gravitino dark matter in thermal leptogenesis

  • Masahiro Ibe
  • Motoo SuzukiEmail author
  • Tsutomu T. Yanagida
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we revisit the gravitino dark matter scenario in the presence of the bilinear R-parity violating interaction. In particular, we discuss a consistency with the thermal leptogenesis. For a high reheating temperature required for the thermal leptogenesis, the gravitino dark matter tends to be overproduced, which puts a severe upper limit on the gluino mass. As we will show, a large portion of parameter space of the gravitino dark matter scenario has been excluded by combining the constraints from the gravitino abundance and the null results of the searches for the superparticles at the LHC experiments. In particular, the models with the stau (and other charged slepton) NLSP has been almost excluded by the searches for the long-lived charged particles at the LHC unless the required reheating temperature is somewhat lowered by assuming, for example, a degenerated right-handed neutrino mass spectrum.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L.J. Hall and M. Suzuki, Explicit R-Parity Breaking in Supersymmetric Models, Nucl. Phys. B 231 (1984) 419 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.W. Hawking, Quantum Coherence Down the Wormhole, Phys. Lett. B 195 (1987) 337 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    G.V. Lavrelashvili, V.A. Rubakov and P.G. Tinyakov, Disruption of Quantum Coherence upon a Change in Spatial Topology in Quantum Gravity, JETP Lett. 46 (1987) 167 [INSPIRE].ADSGoogle Scholar
  6. [6]
    S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S.R. Coleman, Why There Is Nothing Rather Than Something: A Theory of the Cosmological Constant, Nucl. Phys. B 310 (1988) 643 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    G. Gilbert, Wormhole induced proton decay, Nucl. Phys. B 328 (1989) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  10. [10]
    L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Preskill and L.M. Krauss, Local Discrete Symmetry and Quantum Mechanical Hair, Nucl. Phys. B 341 (1990) 50 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. Preskill, S.P. Trivedi, F. Wilczek and M.B. Wise, Cosmology and broken discrete symmetry, Nucl. Phys. B 363 (1991) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Weinberg, Supersymmetry at Ordinary Energies. 1. Masses and Conservation Laws, Phys. Rev. D 26 (1982) 287 [INSPIRE].
  16. [16]
    N. Sakai and T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys. B 197 (1982) 533 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Dimopoulos, S. Raby and F. Wilczek, Proton Decay in Supersymmetric Models, Phys. Lett. B 112 (1982) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, proceedings of Workshop on the Unified Theories and the Baryon Number in the Universe, Tsukuba, Japan, February 13-14, 1979 Conf. Proc. C7902131 (1979) 95 [INSPIRE].
  19. [19]
    P. Ramond, The Family Group in Grand Unified Theories, hep-ph/9809459 [INSPIRE].
  20. [20]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  21. [21]
    T. Watari, Statistics of F-theory flux vacua for particle physics, JHEP 11 (2015) 065 [arXiv:1506.08433] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino Dark Matter in R-Parity Breaking Vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [INSPIRE].
  23. [23]
    J. Schmidt, C. Weniger and T.T. Yanagida, Dynamical Matter-Parity Breaking and Gravitino Dark Matter, Phys. Rev. D 82 (2010) 103517 [arXiv:1008.0398] [INSPIRE].ADSGoogle Scholar
  24. [24]
    F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485 (2000) 388 [hep-ph/0005214] [INSPIRE].
  25. [25]
    G. Moreau and M. Chemtob, R-parity violation and the cosmological gravitino problem, Phys. Rev. D 65 (2002) 024033 [hep-ph/0107286] [INSPIRE].
  26. [26]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].
  28. [28]
    W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].
  29. [29]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336] [hep-ph/0012052] [INSPIRE].
  31. [31]
    K. Hamaguchi, F. Takahashi and T.T. Yanagida, Decaying gravitino dark matter and an upper bound on the gluino mass, Phys. Lett. B 677 (2009) 59 [arXiv:0901.2168] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].
  33. [33]
    T. Christodoulakis and E. Korfiatis, Contact transformations and the quantization of constraint systems, Phys. Lett. B 256 (1991) 457 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Fischler, G.F. Giudice, R.G. Leigh and S. Paban, Constraints on the baryogenesis scale from neutrino masses, Phys. Lett. B 258 (1991) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    H.K. Dreiner and G.G. Ross, Sphaleron erasure of primordial baryogenesis, Nucl. Phys. B 410 (1993) 188 [hep-ph/9207221] [INSPIRE].
  36. [36]
    M. Endo, K. Hamaguchi and S. Iwamoto, Lepton Flavor Violation and Cosmological Constraints on R-parity Violation, JCAP 02 (2010) 032 [arXiv:0912.0585] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Higaki, K. Nakayama, K. Saikawa, T. Takahashi and M. Yamaguchi, Affleck-Dine baryogenesis with R-parity violation, Phys. Rev. D 90 (2014) 045001 [arXiv:1404.5796] [INSPIRE].ADSGoogle Scholar
  38. [38]
    I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453] [INSPIRE].
  40. [40]
    E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho and K. Freese, Improvement of cosmological neutrino mass bounds, Phys. Rev. D 94 (2016) 083522 [arXiv:1605.04320] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Ibe, S. Iwamoto, S. Matsumoto, T. Moroi and N. Yokozaki, Recent Result of the AMS-02 Experiment and Decaying Gravitino Dark Matter in Gauge Mediation, JHEP 08 (2013) 029 [arXiv:1304.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    K. Ishiwata, S. Matsumoto and T. Moroi, High Energy Cosmic Rays from the Decay of Gravitino Dark Matter, Phys. Rev. D 78 (2008) 063505 [arXiv:0805.1133] [INSPIRE].ADSGoogle Scholar
  43. [43]
    K. Ishiwata, S. Matsumoto and T. Moroi, Cosmic-Ray Positron from Superparticle Dark Matter and the PAMELA Anomaly, Phys. Lett. B 675 (2009) 446 [arXiv:0811.0250] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Ishiwata, S. Matsumoto and T. Moroi, High Energy Cosmic Rays from Decaying Supersymmetric Dark Matter, JHEP 05 (2009) 110 [arXiv:0903.0242] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Delahaye and M. Grefe, Antiproton limits on decaying gravitino dark matter, JCAP 12 (2013) 045 [arXiv:1305.7183] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Ibarra and D. Tran, Gamma Ray Spectrum from Gravitino Dark Matter Decay, Phys. Rev. Lett. 100 (2008) 061301 [arXiv:0709.4593] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Ishiwata, S. Matsumoto and T. Moroi, Cosmic Gamma-ray from Inverse Compton Process in Unstable Dark Matter Scenario, Phys. Lett. B 679 (2009) 1 [arXiv:0905.4593] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    E. Carquin, M.A. Diaz, G.A. Gomez-Vargas, B. Panes and N. Viaux, Confronting recent AMS-02 positron fraction and Fermi-LAT extragalactic γ-ray background measurements with gravitino dark matter, Phys. Dark Univ. 11 (2016) 1 [arXiv:1501.05932] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    S. Ando and K. Ishiwata, Constraints on decaying dark matter from the extragalactic gamma-ray background, JCAP 05 (2015) 024 [arXiv:1502.02007] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Ando and K. Ishiwata, Constraining particle dark matter using local galaxy distribution, JCAP 06 (2016) 045 [arXiv:1604.02263] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    L. Covi, M. Grefe, A. Ibarra and D. Tran, Unstable Gravitino Dark Matter and Neutrino Flux, JCAP 01 (2009) 029 [arXiv:0809.5030] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Fermi-LAT collaboration, M. Ackermann et al., The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, Astrophys. J. 799 (2015) 86 [arXiv:1410.3696] [INSPIRE].
  53. [53]
    V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D 75 (2007) 075011 [hep-ph/0701104] [INSPIRE].
  54. [54]
    J. Ellis, M.A.G. Garcia, D.V. Nanopoulos, K.A. Olive and M. Peloso, Post-Inflationary Gravitino Production Revisited, JCAP 03 (2016) 008 [arXiv:1512.05701] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Pradler and F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [INSPIRE].
  56. [56]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
  57. [57]
    S. Antusch and A.M. Teixeira, Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis, JCAP 02 (2007) 024 [hep-ph/0611232] [INSPIRE].
  58. [58]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  59. [59]
    J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].
  60. [60]
    J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].
  61. [61]
    M. Fujii, M. Ibe and T. Yanagida, Upper bound on gluino mass from thermal leptogenesis, Phys. Lett. B 579 (2004) 6 [hep-ph/0310142] [INSPIRE].
  62. [62]
    J.L. Feng, S.-f. Su and F. Takayama, SuperWIMP gravitino dark matter from slepton and sneutrino decays, Phys. Rev. D 70 (2004) 063514 [hep-ph/0404198] [INSPIRE].
  63. [63]
    J.L. Feng, S. Su and F. Takayama, Supergravity with a gravitino LSP, Phys. Rev. D 70 (2004) 075019 [hep-ph/0404231] [INSPIRE].
  64. [64]
    J. Heisig, Gravitino LSP and leptogenesis after the first LHC results, JCAP 04 (2014) 023 [arXiv:1310.6352] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Arbey, M. Battaglia, L. Covi, J. Hasenkamp and F. Mahmoudi, LHC constraints on Gravitino Dark Matter, Phys. Rev. D 92 (2015) 115008 [arXiv:1505.04595] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].
  67. [67]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].
  68. [68]
    M. Hirsch, W. Porod and D. Restrepo, Collider signals of gravitino dark matter in bilinearly broken R-parity, JHEP 03 (2005) 062 [hep-ph/0503059] [INSPIRE].
  69. [69]
    ATLAS collaboration, Further searches for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-078 (2016).
  70. [70]
    A. Arbey, M. Battaglia and F. Mahmoudi, Monojet Searches for MSSM Simplified Models, Phys. Rev. D 94 (2016) 055015 [arXiv:1506.02148] [INSPIRE].ADSGoogle Scholar
  71. [71]
    CMS collaboration, Searchesrches for Long-lived Charged Particles in Proton-Proton Collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-010 (2015).
  72. [72]
    C. Borschensky et al., Squark and gluino production cross sections in pp collisions at \( \sqrt{s}=13 \) , 14, 33 and 100TeV, Eur. Phys. J. C 74 (2014) 3174 [arXiv:1407.5066] [INSPIRE].
  73. [73]
    CMS collaboration, CMS-PAS-SUS-16-014 (2016).
  74. [74]
    T. Cohen et al., A Comparison of Future Proton Colliders Using SUSY Simplified Models: A Snowmass Whitepaper, in proceedings of Community Summer Study 2013: Snowmass on the Mississippi (CSS2013) Minneapolis, MN, U.S.A., July 29 - August 6, 2013, arXiv:1310.0077 [INSPIRE].
  75. [75]
    G.R. Farrar, Status of light gaugino scenarios, Nucl. Phys. Proc. Suppl. 62 (1998) 485 [hep-ph/9710277] [INSPIRE].
  76. [76]
    A.C. Kraan, J.B. Hansen and P. Nevski, Discovery potential of R-hadrons with the ATLAS detector, Eur. Phys. J. C 49 (2007) 623 [hep-ex/0511014] [INSPIRE].
  77. [77]
    Fermi-LAT collaboration, M. Ackermann et al., Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
  78. [78]
    S. Asai, Y. Azuma, M. Endo, K. Hamaguchi and S. Iwamoto, Stau Kinks at the LHC, JHEP 12 (2011) 041 [arXiv:1103.1881] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    P.W. Graham, D.E. Kaplan, S. Rajendran and P. Saraswat, Displaced Supersymmetry, JHEP 07 (2012) 149 [arXiv:1204.6038] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    C. Csáki, E. Kuflik, S. Lombardo, O. Slone and T. Volansky, Phenomenology of a Long-Lived LSP with R-Parity Violation, JHEP 08 (2015) 016 [arXiv:1505.00784] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    ATLAS collaboration, Search for long-lived, heavy particles in final states with a muon and a multi-track displaced vertex in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector., ATLAS-CONF-2013-092 (2013).
  82. [82]
    ATLAS collaboration, Search for massive, long-lived particles using multitrack displaced vertices or displaced lepton pairs in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 072004 [arXiv:1504.05162] [INSPIRE].
  83. [83]
    J.A. Evans and J. Shelton, Long-Lived Staus and Displaced Leptons at the LHC, JHEP 04 (2016) 056 [arXiv:1601.01326] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    [84]ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].
  85. [85]
    CMS collaboration, Search for disappearing tracks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 096 [arXiv:1411.6006] [INSPIRE].
  86. [86]
    S. Shirai, F. Takahashi and T.T. Yanagida, R-violating Decay of Wino Dark Matter and electron/positron Excesses in the PAMELA/Fermi Experiments, Phys. Lett. B 680 (2009) 485 [arXiv:0905.0388] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    B. Bhattacherjee, J.L. Evans, M. Ibe, S. Matsumoto and T.T. Yanagida, Natural supersymmetrys last hope: R-parity violation via UDD operators, Phys. Rev. D 87 (2013) 115002 [arXiv:1301.2336] [INSPIRE].ADSGoogle Scholar
  88. [88]
    N.E. Bomark, S. Lola, P. Osland and A.R. Raklev, Gravitino Dark Matter and the Flavour Structure of R-violating Operators, Phys. Lett. B 677 (2009) 62 [arXiv:0811.2969] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    N.E. Bomark, S. Lola, P. Osland and A.R. Raklev, Photon, Neutrino and Charged Particle Spectra from R-violating Gravitino Decays, Phys. Lett. B 686 (2010) 152 [arXiv:0911.3376] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Supersymmetric QCD, Nucl. Phys. B 241 (1984) 493 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Masahiro Ibe
    • 1
    • 2
  • Motoo Suzuki
    • 1
    Email author
  • Tsutomu T. Yanagida
    • 1
  1. 1.Kavli IPMU (WPI), UTIAS, The University of TokyoKashiwaJapan
  2. 2.ICRR, The University of TokyoKashiwaJapan

Personalised recommendations