Advertisement

Journal of High Energy Physics

, 2017:54 | Cite as

Exclusive photoproduction of a γ ρ pair with a large invariant mass

  • R. Boussarie
  • B. Pire
  • L. Szymanowski
  • S. WallonEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Exclusive photoproduction of a γ ρ pair in the kinematics where the pair has a large invariant mass and the final nucleon has a small transverse momentum is described in the collinear factorization framework. The scattering amplitude is calculated at leading order in α s and the differential cross sections for the process where the ρ−meson is either longitudinally or transversely polarized are estimated in the kinematics of the JLab 12-GeV experiments.

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Goeke, M.V. Polyakov and M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons, Prog. Part. Nucl. Phys. 47 (2001) 401 [hep-ph/0106012] [INSPIRE].
  2. [2]
    M. Diehl, Generalized parton distributions, Phys. Rept. 388 (2003) 41 [hep-ph/0307382] [INSPIRE].
  3. [3]
    A.V. Belitsky and A.V. Radyushkin, Unraveling hadron structure with generalized parton distributions, Phys. Rept. 418 (2005) 1 [hep-ph/0504030] [INSPIRE].
  4. [4]
    S. Boffi and B. Pasquini, Generalized parton distributions and the structure of the nucleon, Riv. Nuovo Cim. 30 (2007) 387 [arXiv:0711.2625] [INSPIRE].ADSGoogle Scholar
  5. [5]
    V.D. Burkert and M. Diehl, Generalized parton distributions, in Electromagnetic interactions and hadronic structure, F. Close et al. eds., (2007), pg. 359 [INSPIRE].
  6. [6]
    M. Guidal, Generalized parton distributions and deep virtual Compton scattering, Prog. Part. Nucl. Phys. 61 (2008) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Yu. Ivanov, B. Pire, L. Szymanowski and O.V. Teryaev, Probing chiral odd GPD’s in diffractive electroproduction of two vector mesons, Phys. Lett. B 550 (2002) 65 [hep-ph/0209300] [INSPIRE].
  8. [8]
    R. Enberg, B. Pire and L. Szymanowski, Transversity GPD in photo- and electroproduction of two vector mesons, Eur. Phys. J. C 47 (2006) 87 [hep-ph/0601138] [INSPIRE].
  9. [9]
    M. El Beiyad, B. Pire, M. Segond, L. Szymanowski and S. Wallon, Photoproduction of a πρ T pair with a large invariant mass and transversity generalized parton distribution, Phys. Lett. B 688 (2010) 154 [arXiv:1001.4491] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Kumano, M. Strikman and K. Sudoh, Novel two-to-three hard hadronic processes and possible studies of generalized parton distributions at hadron facilities, Phys. Rev. D 80 (2009) 074003 [arXiv:0905.1453] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.B. Larionov and M. Strikman, Exploring QCD dynamics in medium energy γA semiexclusive collisions, Phys. Lett. B 760 (2016) 753 [arXiv:1606.00761] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Boussarie, B. Pire, L. Szymanowski and S. Wallon, On γNγρN at large γρ invariant mass, in Photon 2015: International Conference on the Structure and Interactions of the Photon and the 21th International Workshop on Photon-Photon Collisions and International Workshop on High Energy Photon Linear Colliders, Novosibirsk Russia June 15-19 2015 [arXiv:1511.04371] [INSPIRE].
  13. [13]
    R. Boussarie, B. Pire, L. Szymanowski and S. Wallon, Revealing transversity GPDs through the photoproduction of a photon and a ρ meson, EPJ Web Conf. 112 (2016) 01006 [arXiv:1602.01774] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    LHPC and SESAM collaborations, P. Hagler, J.W. Negele, D.B. Renner, W. Schroers, T. Lippert and K. Schilling, Moments of nucleon generalized parton distributions in lattice QCD, Phys. Rev. D 68 (2003) 034505 [hep-lat/0304018] [INSPIRE].
  15. [15]
    QCDSF collaboration, M. Gockeler et al., Generalized parton distributions from lattice QCD, Phys. Rev. Lett. 92 (2004) 042002 [hep-ph/0304249] [INSPIRE].
  16. [16]
    UKQCD and QCDSF collaborations, M. Gockeler et al., Quark helicity flip generalized parton distributions from two-flavor lattice QCD, Phys. Lett. B 627 (2005) 113 [hep-lat/0507001] [INSPIRE].
  17. [17]
    UKQCD and QCDSF collaborations, M. Gockeler et al., Transverse spin structure of the nucleon from lattice QCD simulations, Phys. Rev. Lett. 98 (2007) 222001 [hep-lat/0612032] [INSPIRE].
  18. [18]
    G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].ADSGoogle Scholar
  19. [19]
    G.R. Farrar, G.F. Sterman and H.-Y. Zhang, Absence of Sudakov factors in large angle photoproduction and Compton scattering, Phys. Rev. Lett. 62 (1989) 2229 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.C. Collins, L. Frankfurt and M. Strikman, Factorization for hard exclusive electroproduction of mesons in QCD, Phys. Rev. D 56 (1997) 2982 [hep-ph/9611433] [INSPIRE].
  21. [21]
    D. Müller, D. Robaschik, B. Geyer, F.M. Dittes and J. Hořejši, Wave functions, evolution equations and evolution kernels from light ray operators of QCD, Fortsch. Phys. 42 (1994) 101 [hep-ph/9812448] [INSPIRE].
  22. [22]
    E.R. Berger, M. Diehl and B. Pire, Time-like Compton scattering: exclusive photoproduction of lepton pairs, Eur. Phys. J. C 23 (2002) 675 [hep-ph/0110062] [INSPIRE].
  23. [23]
    B. Pire, L. Szymanowski and J. Wagner, NLO corrections to timelike, spacelike and double deeply virtual Compton scattering, Phys. Rev. D 83 (2011) 034009 [arXiv:1101.0555] [INSPIRE].ADSGoogle Scholar
  24. [24]
    I.V. Anikin, B. Pire and O.V. Teryaev, On the gauge invariance of the DVCS amplitude, Phys. Rev. D 62 (2000) 071501 [hep-ph/0003203] [INSPIRE].
  25. [25]
    V.M. Braun, A.N. Manashov and B. Pirnay, Finite-t and target mass corrections to deeply virtual Compton scattering, Phys. Rev. Lett. 109 (2012) 242001 [arXiv:1209.2559] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Ball and V.M. Braun, The ρ meson light cone distribution amplitudes of leading twist revisited, Phys. Rev. D 54 (1996) 2182 [hep-ph/9602323] [INSPIRE].
  27. [27]
    M. Diehl, Generalized parton distributions with helicity flip, Eur. Phys. J. C 19 (2001) 485 [hep-ph/0101335] [INSPIRE].
  28. [28]
    A.V. Radyushkin, Double distributions and evolution equations, Phys. Rev. D 59 (1999) 014030 [hep-ph/9805342] [INSPIRE].
  29. [29]
    S.V. Goloskokov and P. Kroll, Transversity in hard exclusive electroproduction of pseudoscalar mesons, Eur. Phys. J. A 47 (2011) 112 [arXiv:1106.4897] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Glück, E. Reya and A. Vogt, Dynamical parton distributions revisited, Eur. Phys. J. C 5 (1998) 461 [hep-ph/9806404] [INSPIRE].
  31. [31]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Alekhin, J. Blumlein and S. Moch, Parton distribution functions and benchmark cross sections at NNLO, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Gluck, E. Reya, M. Stratmann and W. Vogelsang, Models for the polarized parton distributions of the nucleon, Phys. Rev. D 63 (2001) 094005 [hep-ph/0011215] [INSPIRE].
  35. [35]
    M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, Simultaneous extraction of transversity and Collins functions from new SIDIS and e + e data, Phys. Rev. D 87 (2013) 094019 [arXiv:1303.3822] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for ζ → 0, Phys. Rev. D 62 (2000) 071503 [Erratum ibid. D 66 (2002) 119903] [hep-ph/0005108] [INSPIRE].
  37. [37]
    J.P. Ralston and B. Pire, Femtophotography of protons to nuclei with deeply virtual Compton scattering, Phys. Rev. D 66 (2002) 111501 [hep-ph/0110075] [INSPIRE].
  38. [38]
    M. Diehl, Generalized parton distributions in impact parameter space, Eur. Phys. J. C 25 (2002) 223 [Erratum ibid. C 31 (2003) 277] [hep-ph/0205208] [INSPIRE].
  39. [39]
    M. Burkardt, Transverse deformation of parton distributions and transversity decomposition of angular momentum, Phys. Rev. D 72 (2005) 094020 [hep-ph/0505189] [INSPIRE].
  40. [40]
    M. Diehl and P. Hagler, Spin densities in the transverse plane and generalized transversity distributions, Eur. Phys. J. C 44 (2005) 87 [hep-ph/0504175] [INSPIRE].
  41. [41]
    A. Mukherjee, D. Chakrabarti and R. Manohar, Chiral odd generalized parton distributions in position space, AIP Conf. Proc. 1149 (2009) 533 [arXiv:0902.1461] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Diehl and P. Kroll, Nucleon form factors, generalized parton distributions and quark angular momentum, Eur. Phys. J. C 73 (2013) 2397 [arXiv:1302.4604] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Anselmino et al., Sivers effect for pion and kaon production in semi-inclusive deep inelastic scattering, Eur. Phys. J. A 39 (2009) 89 [arXiv:0805.2677] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    P. Kessler, The Weizsacker-Williams method and similar approximation methods in quantum electrodynamics, Acta Phys. Austriaca 41 (1975) 141 [INSPIRE].Google Scholar
  45. [45]
    S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Improving the Weizsacker-Williams approximation in electron-proton collisions, Phys. Lett. B 319 (1993) 339 [hep-ph/9310350] [INSPIRE].
  46. [46]
    H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski and J. Wagner, Timelike and spacelike deeply virtual Compton scattering at next-to-leading order, Phys. Rev. D 87 (2013) 054029 [arXiv:1301.3819] [INSPIRE].ADSGoogle Scholar
  47. [47]
    B. Nizic, Beyond leading order perturbative QCD corrections to γγM + M (M = π, K), Phys. Rev. D 35 (1987) 80 [INSPIRE].ADSGoogle Scholar
  48. [48]
    G. Duplancic and B. Nizic, NLO perturbative QCD predictions for γγM + M (M = π, K), Phys. Rev. Lett. 97 (2006) 142003 [hep-ph/0607069] [INSPIRE].
  49. [49]
    LHC Forward Physics Working Group collaboration, K. Akiba et al., LHC forward physics, J. Phys. G 43 (2016) 110201 [arXiv:1611.05079] [INSPIRE].
  50. [50]
    D. Boer et al., Gluons and the quark sea at high energies: distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  51. [51]
    LHeC Study Group collaboration, J.L. Abelleira Fernandez et al., A Large Hadron electron Collider at CERN: report on the physics and design concepts for machine and detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • R. Boussarie
    • 1
  • B. Pire
    • 2
  • L. Szymanowski
    • 3
  • S. Wallon
    • 1
    • 4
    Email author
  1. 1.LPT, Université Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Centre de Physique Théorique, Ecole polytechnique, CNRS, Université Paris-SaclayPalaiseauFrance
  3. 3.National Center for Nuclear Research (NCBJ)WarsawPoland
  4. 4.UPMC Univ. Paris 06, Faculté de physiqueParis Cedex 05France

Personalised recommendations