Journal of High Energy Physics

, 2017:45 | Cite as

Sterile neutrino portal to Dark Matter I: the U(1) BL case

  • Miguel Escudero
  • Nuria Rius
  • Verónica SanzEmail author
Open Access
Regular Article - Theoretical Physics


In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global U(1) B−L , broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars — the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron — and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies.


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].
  2. [2]
    R. Adhikari et al., A white paper on keV sterile neutrino dark matter, arXiv:1602.04816 [INSPIRE].
  3. [3]
    V. Gonzalez Macias and J. Wudka, Effective theories for dark matter interactions and the neutrino portal paradigm, JHEP 07 (2015) 161 [arXiv:1506.03825] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V. González-Macías, J.I. Illana and J. Wudka, A realistic model for dark matter interactions in the neutrino portal paradigm, JHEP 05 (2016) 171 [arXiv:1601.05051] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    M. Escudero, N. Rius and V. Sanz, Sterile neutrino portal to dark matter II: exact dark symmetry, arXiv:1607.02373 [INSPIRE].
  6. [6]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are there real Goldstone bosons associated with broken lepton number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Khalil, Low scale B-L extension of the Standard Model at the LHC, J. Phys. G 35 (2008) 055001 [hep-ph/0611205] [INSPIRE].
  8. [8]
    S. Iso, N. Okada and Y. Orikasa, Classically conformal B-L extended Standard Model, Phys. Lett. B 676 (2009) 81 [arXiv:0902.4050] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Kanemura, T. Matsui and H. Sugiyama, Neutrino mass and dark matter from gauged U(1)BL breaking, Phys. Rev. D 90 (2014) 013001 [arXiv:1405.1935] [INSPIRE].ADSGoogle Scholar
  10. [10]
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali and J. March-Russell, Neutrino masses from large extra dimensions, Phys. Rev. D 65 (2001) 024032 [hep-ph/9811448] [INSPIRE].
  11. [11]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].
  12. [12]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].
  13. [13]
    M. Lindner, D. Schmidt and T. Schwetz, Dark matter and neutrino masses from global U(1)BL symmetry breaking, Phys. Lett. B 705 (2011) 324 [arXiv:1105.4626] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  15. [15]
    S.R. Coleman, Why there is nothing rather than something: a theory of the cosmological constant, Nucl. Phys. B 310 (1988) 643 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    E.K. Akhmedov, Z.G. Berezhiani, R.N. Mohapatra and G. Senjanović, Planck scale effects on the majoron, Phys. Lett. B 299 (1993) 90 [hep-ph/9209285] [INSPIRE].
  17. [17]
    M. Lattanzi, R.A. Lineros and M. Taoso, Connecting neutrino physics with dark matter, New J. Phys. 16 (2014) 125012 [arXiv:1406.0004] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Bazzocchi, M. Lattanzi, S. Riemer-Sørensen and J.W.F. Valle, X-ray photons from late-decaying majoron dark matter, JCAP 08 (2008) 013 [arXiv:0805.2372] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Garcia-Cely, A. Ibarra and E. Molinaro, Cosmological and astrophysical signatures of dark matter annihilations into pseudo-Goldstone bosons, JCAP 02 (2014) 032 [arXiv:1312.3578] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].
  21. [21]
    N. Okada and O. Seto, Higgs portal dark matter in the minimal gauged U(1)BL model, Phys. Rev. D 82 (2010) 023507 [arXiv:1002.2525] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. De Simone, V. Sanz and H.P. Sato, Pseudo-Dirac dark matter leaves a trace, Phys. Rev. Lett. 105 (2010) 121802 [arXiv:1004.1567] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Racker and N. Rius, Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations, JHEP 11 (2014) 163 [arXiv:1406.6105] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the Standard Model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].
  25. [25]
    LUX collaboration, D.S. Akerib et al., The Large Underground Xenon (LUX) experiment, Nucl. Instrum. Meth. A 704 (2013) 111 [arXiv:1211.3788] [INSPIRE].
  26. [26]
    LUX collaboration, D.S. Akerib et al., Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data, Phys. Rev. Lett. 116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].
  27. [27]
    XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  28. [28]
    Planck collaboration, J. Tauber et al., The scientific programme of Planck, astro-ph/0604069 [INSPIRE].
  29. [29]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  30. [30]
    A. Semenov, LanHEP: a package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431 [arXiv:0805.0555] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2015-044, CERN, Geneva Switzerland, (2015) [INSPIRE].
  33. [33]
    CMS and ATLAS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-15-002, CERN, Geneva Switzerland, (2015) [INSPIRE].
  34. [34]
    S. Weinberg, Goldstone bosons as fractional cosmic neutrinos, Phys. Rev. Lett. 110 (2013) 241301 [arXiv:1305.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.M. Gago, P. Hernández, J. Jones-Pérez, M. Losada and A. Moreno Briceño, Probing the type I seesaw mechanism with displaced vertices at the LHC, Eur. Phys. J. C 75 (2015) 470 [arXiv:1505.05880] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  37. [37]
    M.C. Gonzalez-Garcia, A. Santamaria and J.W.F. Valle, Isosinglet neutral heavy lepton production in Z decays and neutrino mass, Nucl. Phys. B 342 (1990) 108 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Dittmar, A. Santamaria, M.C. Gonzalez-Garcia and J.W.F. Valle, Production mechanisms and signatures of isosinglet neutral heavy leptons in Z 0 decays, Nucl. Phys. B 332 (1990)1 [INSPIRE].
  39. [39]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
  40. [40]
    S.-H. Oh, W.J.G. de Blok, E. Brinks, F. Walter and R.C. Kennicutt, Jr, Dark and luminous matter in THINGS dwarf galaxies, Astron. J. 141 (2011) 193 [arXiv:1011.0899] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G.R. Blumenthal, S.M. Faber, R. Flores and J.R. Primack, Contraction of dark matter galactic halos due to baryonic infall, Astrophys. J. 301 (1986) 27 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    O.Y. Gnedin, A.V. Kravtsov, A.A. Klypin and D. Nagai, Response of dark matter halos to condensation of baryons: cosmological simulations and improved adiabatic contraction model, Astrophys. J. 616 (2004) 16 [astro-ph/0406247] [INSPIRE].
  43. [43]
    T. Sawala, Q. Guo, C. Scannapieco, A. Jenkins and S.D.M. White, What is the (dark) matter with dwarf galaxies?, Mon. Not. Roy. Astron. Soc. 413 (2011) 659 [arXiv:1003.0671] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Boylan-Kolchin, J.S. Bullock and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415 (2011) L40 [arXiv:1103.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].
  46. [46]
    R. Massey et al., The behaviour of dark matter associated with four bright cluster galaxies in the 10 kpc core of Abell 3827, Mon. Not. Roy. Astron. Soc. 449 (2015) 3393 [arXiv:1504.03388] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Kahlhoefer, K. Schmidt-Hoberg, J. Kummer and S. Sarkar, On the interpretation of dark matter self-interactions in Abell 3827, Mon. Not. Roy. Astron. Soc. 452 (2015) L54 [arXiv:1504.06576] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Bellazzini, M. Cliche and P. Tanedo, Effective theory of self-interacting dark matter, Phys. Rev. D 88 (2013) 083506 [arXiv:1307.1129] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Archidiacono, S. Hannestad, R.S. Hansen and T. Tram, Cosmology with self-interacting sterile neutrinos and dark mattera pseudoscalar model, Phys. Rev. D 91 (2015) 065021 [arXiv:1404.5915] [INSPIRE].ADSGoogle Scholar
  50. [50]
    R. Iengo, Sommerfeld enhancement: general results from field theory diagrams, JHEP 05 (2009) 024 [arXiv:0902.0688] [INSPIRE].
  51. [51]
    S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Lisanti, Lectures on dark matter physics, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder U.S.A., 1-26 June 2015 [arXiv:1603.03797] [INSPIRE].
  55. [55]
    C. Garcia-Cely and J. Heeck, Indirect searches of dark matter via polynomial spectral features, JCAP 08 (2016) 023 [arXiv:1605.08049] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  57. [57]
    HESS collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner galactic halo from 10 years of observations with H.E.S.S., Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].
  58. [58]
    IceCube collaboration, M.G. Aartsen et al., IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters, Phys. Rev. D 88 (2013) 122001 [arXiv:1307.3473] [INSPIRE].
  59. [59]
    IceCube collaboration, M.G. Aartsen et al., Multipole analysis of IceCube data to search for dark matter accumulated in the galactic halo, Eur. Phys. J. C 75 (2015) 20 [arXiv:1406.6868] [INSPIRE].
  60. [60]
    IceCube collaboration, M.G. Aartsen et al., Search for dark matter annihilation in the galactic center with IceCube-79, Eur. Phys. J. C 75 (2015) 492 [arXiv:1505.07259] [INSPIRE].
  61. [61]
    F.S. Queiroz, C.E. Yaguna and C. Weniger, Gamma-ray limits on neutrino lines, JCAP 05 (2016) 050 [arXiv:1602.05966] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Departamento de Física Teórica and IFICUniversidad de Valencia-CSICPaternaSpain
  2. 2.Department of Physics and AstronomyUniversity of SussexBrightonU.K.

Personalised recommendations