Advertisement

Journal of High Energy Physics

, 2017:41 | Cite as

Matrix thermalization

  • Ben Craps
  • Oleg Evnin
  • Kévin NguyenEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

Keywords

2D Gravity AdS-CFT Correspondence Gauge-gravity correspondence M(atrix) Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Y.V. Kovchegov and A. Taliotis, Early time dynamics in heavy ion collisions from AdS/CFT correspondence, Phys. Rev. C 76 (2007) 014905 [arXiv:0705.1234] [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling heavy ion collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP 10 (2009) 043 [arXiv:0906.4423] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-Abelian plasmas simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    V. Balasubramanian et al., Inhomogeneous thermalization in strongly coupled field theories, Phys. Rev. Lett. 111 (2013) 231602 [arXiv:1307.1487] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions. III. Gravitationally collapsing shell and quasiequilibrium, Phys. Rev. D 78 (2008) 125018 [arXiv:0808.0910] [INSPIRE].
  12. [12]
    V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H. Liu and S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement scrambling in 2d conformal field theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    J. Polchinski, M-theory and the light cone, Prog. Theor. Phys. Suppl. 134 (1999) 158 [hep-th/9903165] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    Y. Sekino and T. Yoneya, Generalized AdS-CFT correspondence for matrix theory in the large-N limit, Nucl. Phys. B 570 (2000) 174 [hep-th/9907029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    T. Wiseman and B. Withers, Holographic renormalization for coincident Dp-branes, JHEP 10 (2008) 037 [arXiv:0807.0755] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett. 100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev. D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Catterall and T. Wiseman, Extracting black hole physics from the lattice, JHEP 04 (2010) 077 [arXiv:0909.4947] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    D. Kadoh and S. Kamata, Gauge/gravity duality and lattice simulations of one dimensional SYM with sixteen supercharges, arXiv:1503.08499 [INSPIRE].
  28. [28]
    V.G. Filev and D. O’Connor, The BFSS model on the lattice, JHEP 05 (2016) 167 [arXiv:1506.01366] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A.V. Smilga, Comments on thermodynamics of supersymmetric matrix models, Nucl. Phys. B 818 (2009) 101 [arXiv:0812.4753] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    T. Wiseman, On black hole thermodynamics from super Yang-Mills, JHEP 07 (2013) 101 [arXiv:1304.3938] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    T. Morita, S. Shiba, T. Wiseman and B. Withers, Warm p-soup and near extremal black holes, Class. Quant. Grav. 31 (2014) 085001 [arXiv:1311.6540] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    T. Morita, S. Shiba, T. Wiseman and B. Withers, Moduli dynamics as a predictive tool for thermal maximally supersymmetric Yang-Mills at large N, JHEP 07 (2015) 047 [arXiv:1412.3939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    R. Hübener, Y. Sekino and J. Eisert, Equilibration in low-dimensional quantum matrix models, JHEP 04 (2015) 166 [arXiv:1403.1392] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    C.T. Asplund, D. Berenstein and E. Dzienkowski, Large N classical dynamics of holographic matrix models, Phys. Rev. D 87 (2013) 084044 [arXiv:1211.3425] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S. Aoki, M. Hanada and N. Iizuka, Quantum black hole formation in the BFSS matrix model, JHEP 07 (2015) 029 [arXiv:1503.05562] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    G. Gur-Ari, M. Hanada and S.H. Shenker, Chaos in classical D0-brane mechanics, JHEP 02 (2016) 091 [arXiv:1512.00019] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Asplund, D. Berenstein and D. Trancanelli, Evidence for fast thermalization in the plane-wave matrix model, Phys. Rev. Lett. 107 (2011) 171602 [arXiv:1104.5469] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    N. Iizuka, D. Kabat, S. Roy and D. Sarkar, Black hole formation at the correspondence point, Phys. Rev. D 87 (2013) 126010 [arXiv:1303.7278] [INSPIRE].ADSGoogle Scholar
  39. [39]
    N. Iizuka, D. Kabat, S. Roy and D. Sarkar, Black hole formation in fuzzy sphere collapse, Phys. Rev. D 88 (2013) 044019 [arXiv:1306.3256] [INSPIRE].ADSGoogle Scholar
  40. [40]
    G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev. D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Jevicki, Y. Kazama and T. Yoneya, Generalized conformal symmetry in D-brane matrix models, Phys. Rev. D 59 (1999) 066001 [hep-th/9810146] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    A. Jevicki and T. Yoneya, Space-time uncertainty principle and conformal symmetry in D-particle dynamics, Nucl. Phys. B 535 (1998) 335 [hep-th/9805069] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Yoneya, Generalized conformal symmetry and oblique AdS/CFT correspondence for matrix theory, Class. Quant. Grav. 17 (2000) 1307 [hep-th/9908153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    A. Strominger, AdS 2 quantum gravity and string theory, JHEP 01 (1999) 007 [hep-th/9809027] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, Prog. Theor. Exp. Phys. 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  50. [50]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Grumiller, J. Salzer and D. Vassilevich, Aspects of AdS 2 holography with non-constant dilaton, arXiv:1607.06974 [INSPIRE].
  52. [52]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [arXiv:1608.07018] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    B.C. van Rees, Holographic renormalization for irrelevant operators and multi-trace counterterms, JHEP 08 (2011) 093 [arXiv:1102.2239] [INSPIRE].CrossRefzbMATHGoogle Scholar
  54. [54]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    T. Ortiz, H. Samtleben and D. Tsimpis, Matrix model holography, JHEP 12 (2014) 096 [arXiv:1410.0487] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Y. Matsuo, Y. Sasai and Y. Sekino, Linear responses of D0-branes via gauge/gravity correspondence, Phys. Rev. D 88 (2013) 026020 [arXiv:1305.2506] [INSPIRE].ADSGoogle Scholar
  57. [57]
    Y. Sekino, Supercurrents in matrix theory and the generalized AdS/CFT correspondence, Nucl. Phys. B 602 (2001) 147 [hep-th/0011122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    H.J. Boonstra, K. Skenderis and P.K. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    K. Skenderis, Black holes and branes in string theory, Lect. Notes Phys. 541 (2000) 325 [hep-th/9901050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Direct test of the gauge-gravity correspondence for matrix theory correlation functions, JHEP 12 (2011) 020 [arXiv:1108.5153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    W. Taylor and M. Van Raamsdonk, Multiple D0-branes in weakly curved backgrounds, Nucl. Phys. B 558 (1999) 63 [hep-th/9904095] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    D.N. Kabat and W. Taylor, Linearized supergravity from matrix theory, Phys. Lett. B 426 (1998) 297 [hep-th/9712185] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    M.J. Duncan and L.G. Jensen, Four forms and the vanishing of the cosmological constant, Nucl. Phys. B 336 (1990) 100 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    K. Groh, J. Louis and J. Sommerfeld, Duality and couplings of 3-form-multiplets in N = 1 supersymmetry, JHEP 05 (2013) 001 [arXiv:1212.4639] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    V. Balasubramanian et al., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP 04 (2013) 069 [arXiv:1212.6066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    J.R. David and S. Khetrapal, Thermalization of Green functions and quasinormal modes, JHEP 07 (2015) 041 [arXiv:1504.04439] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    Y.-Z. Chu, TensoriaCalc package for Mathematica, http://www.stargazing.net/yizen/Tensoria.html.
  75. [75]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].ADSMathSciNetGoogle Scholar
  76. [76]
    K.D. Kokkotas and B.G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel. 2 (1999) 2 [gr-qc/9909058] [INSPIRE].
  77. [77]
    R.A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay InstitutesBrusselsBelgium
  2. 2.Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations