Journal of High Energy Physics

, 2017:23 | Cite as

Algebraic properties of the monopole formula

Open Access
Regular Article - Theoretical Physics

Abstract

The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional \( \mathcal{N}=4 \) gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t = 1 and t → ∞ equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories.

Keywords

Field Theories in Lower Dimensions Supersymmetric gauge theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and three dimensional Sicilian theories, JHEP 09 (2014) 185 [arXiv:1403.2384] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Hall-Littlewood polynomials, JHEP 09 (2014) 178 [arXiv:1403.0585] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb branch and the moduli space of instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, T ρσ(G) theories and their Hilbert series, JHEP 01 (2015) 150 [arXiv:1410.1548] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Hanany and M. Sperling, Coulomb branches for rank 2 gauge groups in 3d \( \mathcal{N}=4 \) gauge theories, JHEP 08 (2016) 016 [arXiv:1605.00010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Hanany, C. Hwang, H. Kim, J. Park and R.-K. Seong, Hilbert series for theories with aharony duals, JHEP 11 (2015) 132 [arXiv:1505.02160] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Cremonesi, The Hilbert series of 3d \( \mathcal{N}=2 \) Yang-Mills theories with vectorlike matter, J. Phys. A 48 (2015) 455401 [arXiv:1505.02409] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  9. [9]
    S. Cremonesi, N. Mekareeya and A. Zaffaroni, The moduli spaces of 3d \( \mathcal{N}\ge 2 \) Chern-Simons gauge theories and their Hilbert series, JHEP 10 (2016) 046 [arXiv:1607.05728] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. Carta and H. Hayashi, Hilbert series and mixed branches of T[SU(N)] theory, arXiv:1609.08034 [INSPIRE].
  11. [11]
    H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) gauge theories, I, Adv. Theor. Math. Phys. 20 (2016) 595 [arXiv:1503.03676] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    H. Nakajima, Questions on provisional Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) gauge theories, arXiv:1510.03908 [INSPIRE].
  13. [13]
    A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) gauge theories, II, arXiv:1601.03586 [INSPIRE].
  14. [14]
    M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb branch of 3d \( \mathcal{N}=4 \) theories, arXiv:1503.04817 [INSPIRE].
  15. [15]
    M. Bullimore, T. Dimofte, D. Gaiotto, J. Hilburn and H.-C. Kim, Vortices and Vermas, arXiv:1609.04406 [INSPIRE].
  16. [16]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge theories and magnetic charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    F. Englert and P. Windey, Quantization condition for ’t Hooft monopoles in compact simple Lie groups, Phys. Rev. D 14 (1976) 2728 [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].
  19. [19]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    M.K. Benna, I.R. Klebanov and T. Klose, Charges of monopole operators in Chern-Simons Yang-Mills theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    G.M. Ziegler, Lectures on polytopes, updated 7th printing of the 1st edition, Graduate Texts in Mathematics volume 152, Springer, Germany (1995).Google Scholar
  25. [25]
    W. Bruns and H.J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge U.K. (1998).CrossRefMATHGoogle Scholar
  26. [26]
    R. Koch, Affine monoids, Hilbert bases and Hilbert functions, Ph.D. thesis, Universität Osnabrück, Osnabrück, Germany (2003).Google Scholar
  27. [27]
    W. Bruns and J. Gubeladze, Polytopes, rings, and K-theory, Springer Monographs in Mathematics, Springer, Germany (2009).Google Scholar
  28. [28]
    E. Miller and B. Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics volume 227, Springer, Germany (2005).Google Scholar
  29. [29]
    A. Sebö, Hilbert bases, caratheodory’s theorem and combinatorial optimization, in the proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, May 28–30, Ontario, Canada (1990)Google Scholar
  30. [30]
    D. Cox, J. Little, and D. O’Shea, Using algebraic geometry, Graduate Texts in Mathematics volume 227, Springer, Germany (1998).Google Scholar
  31. [31]
    R.P. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978) 57.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    G. Ferlito and A. Hanany, A tale of two cones: the Higgs branch of Sp(n) theories with 2n flavours, arXiv:1609.06724 [INSPIRE].
  33. [33]
    D. Eisenbud, D.R. Grayson, M.E. Stillman and B. Sturmfels, Computations in algebraic geometry with Macaulay 2, Algorithms and Computations in Mathematics volume 8, Springer, Germany (2001).Google Scholar
  34. [34]
    R. Birkner, Polyhedra: a package for computations with convex polyhedral objects, J. Softw. Alg. Geom. 1 (2009) 11.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert series of the one instanton moduli space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition, JHEP 11 (2016) 175 [arXiv:1609.07798] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Cox, J. Little and H. Schenck, Toric varieties, Graduate Studies in Mathematics volume 124, American Mathematical Society, U.S.A. (2011).Google Scholar
  38. [38]
    A. Hanany and R. Kalveks, Quiver theories for moduli spaces of classical group nilpotent orbits, JHEP 06 (2016) 130 [arXiv:1601.04020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982) 539.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Theoretical Physics GroupImperial College LondonLondonU.K.
  2. 2.Fakultät für PhysikUniversität WienWienAustria

Personalised recommendations