Journal of High Energy Physics

, 2017:16 | Cite as

Holographic isotropisation in Gauss-Bonnet gravity

  • Tomás Andrade
  • Jorge Casalderrey-Solana
  • Andrej Ficnar
Open Access
Regular Article - Theoretical Physics


We study holographic isotropisation of homogeneous, strongly coupled, non-Abelian plasmas in Gauss-Bonnet gravity with a negative cosmological constant. We focus on small values of the Gauss-Bonnet coupling parameter λ GB and linearise the equations of motion around a time-dependent background solution with λ GB = 0. We numerically solve the linearised equations and show that the entire time evolution of the pressure anisotropy can be well approximated by the linear in λ GB corrections to the quasinormal mode expansion, even in the cases of high anisotropy. We finally show that, quite generally, the time evolution of the pressure anisotropy with the Gauss-Bonnet term is approximately shifted with respect to the evolution without it, with the sign of the shift being directly related to the sign of the λ GB parameter. Combined with the observation that negative λ GB captures qualitative features of positive gauge coupling corrections, this suggests that the latter generically increase the isotropisation time of strongly coupled plasmas.


AdS-CFT Correspondence Gauge-gravity correspondence Holography and quark-gluon plasmas Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefMATHGoogle Scholar
  3. [3]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  4. [4]
    N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE].
  5. [5]
    V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic plasmas, JHEP 05 (2013) 067 [arXiv:1302.2924] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Buchel, R.C. Myers and A. van Niekerk, Universality of abrupt holographic quenches, Phys. Rev. Lett. 111 (2013) 201602 [arXiv:1307.4740] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L. Bellantuono, P. Colangelo, F. De Fazio and F. Giannuzzi, On thermalization of a boost-invariant non Abelian plasma, JHEP 07 (2015) 053 [arXiv:1503.01977] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Bellantuono, P. Colangelo, F. De Fazio, F. Giannuzzi and S. Nicotri, Role of nonlocal probes of thermalization for a strongly interacting non-Abelian plasma, Phys. Rev. D 94 (2016) 025005 [arXiv:1603.08849] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Eling, I. Fouxon and Y. Oz, Gravity and a geometrization of turbulence: an intriguing correspondence, arXiv:1004.2632 [INSPIRE].
  11. [11]
    A. Adams, P.M. Chesler and H. Liu, Holographic vortex liquids and superfluid turbulence, Science 341 (2013) 368 [arXiv:1212.0281] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Adams, P.M. Chesler and H. Liu, Holographic turbulence, Phys. Rev. Lett. 112 (2014) 151602 [arXiv:1307.7267] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H. Yang, A. Zimmerman and L. Lehner, Turbulent black holes, Phys. Rev. Lett. 114 (2015) 081101 [arXiv:1402.4859] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-Abelian plasmas simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M.P. Heller, D. Mateos, W. van der Schee and M. Triana, Holographic isotropization linearized, JHEP 09 (2013) 026 [arXiv:1304.5172] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.F. Fuini and L.G. Yaffe, Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field, JHEP 07 (2015) 116 [arXiv:1503.07148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP 10 (2015) 070 [arXiv:1501.04644] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Casalderrey-Solana, D. Mateos, W. van der Schee and M. Triana, Holographic heavy ion collisions with baryon charge, JHEP 09 (2016) 108 [arXiv:1607.05273] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    B. Hassanain and M. Schvellinger, Plasma conductivity at finite coupling, JHEP 01 (2012) 114 [arXiv:1108.6306] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    S. Grozdanov and A.O. Starinets, On the universal identity in second order hydrodynamics, JHEP 03 (2015) 007 [arXiv:1412.5685] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    B. Hassanain and M. Schvellinger, Diagnostics of plasma photoemission at strong coupling, Phys. Rev. D 85 (2012) 086007 [arXiv:1110.0526] [INSPIRE].ADSMATHGoogle Scholar
  30. [30]
    S.A. Stricker, Holographic thermalization in N = 4 super Yang-Mills theory at finite coupling, Eur. Phys. J. C 74 (2014) 2727 [arXiv:1307.2736] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Steineder, S.A. Stricker and A. Vuorinen, Probing the pattern of holographic thermalization with photons, JHEP 07 (2013) 014 [arXiv:1304.3404] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Grozdanov, N. Kaplis and A.O. Starinets, From strong to weak coupling in holographic models of thermalization, JHEP 07 (2016) 151 [arXiv:1605.02173] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    D. Steineder, S.A. Stricker and A. Vuorinen, Holographic thermalization at intermediate coupling, Phys. Rev. Lett. 110 (2013) 101601 [arXiv:1209.0291] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    X. Zeng and W. Liu, Holographic thermalization in Gauss-Bonnet gravity, Phys. Lett. B 726 (2013) 481 [arXiv:1305.4841] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    A. Dey, S. Mahapatra and T. Sarkar, Holographic thermalization with Weyl corrections, JHEP 01 (2016) 088 [arXiv:1510.00232] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    G. Camilo, Expanding plasmas from anti de Sitter black holes, Eur. Phys. J. C 76 (2016) 682 [arXiv:1609.07116] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Waeber, A. Schäfer, A. Vuorinen and L.G. Yaffe, Finite coupling corrections to holographic predictions for hot QCD, JHEP 11 (2015) 087 [arXiv:1509.02983] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  41. [41]
    M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    G. Papallo and H.S. Reall, Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory, JHEP 11 (2015) 109 [arXiv:1508.05303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    T. Andrade, E. Caceres and C. Keeler, Boundary causality vs hyperbolicity for spherical black holes in Gauss-Bonnet, arXiv:1610.06078 [INSPIRE].
  52. [52]
    Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [INSPIRE].
  54. [54]
    H. Reall, N. Tanahashi and B. Way, Causality and hyperbolicity of Lovelock theories, Class. Quant. Grav. 31 (2014) 205005 [arXiv:1406.3379] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].ADSGoogle Scholar
  56. [56]
    U. Gürsoy, A. Jansen, W. Sybesma and S. Vandoren, Holographic equilibration of nonrelativistic plasmas, Phys. Rev. Lett. 117 (2016) 051601 [arXiv:1602.01375] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Tomás Andrade
    • 1
  • Jorge Casalderrey-Solana
    • 1
  • Andrej Ficnar
    • 1
  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.

Personalised recommendations