Advertisement

Production of high stellar-mass primordial black holes in trapped inflation

  • Shu-Lin Cheng
  • Wolung Lee
  • Kin-Wang Ng
Open Access
Regular Article - Theoretical Physics

Abstract

Trapped inflation has been proposed to provide a successful inflation with a steep potential. We discuss the formation of primordial black holes in the trapped inflationary scenario. We show that primordial black holes are naturally produced during inflation with a steep trapping potential. In particular, we have given a recipe for an inflaton potential with which particle production can induce large non-Gaussian curvature perturbation that leads to the formation of high stellar-mass primordial black holes. These primordial black holes could be dark matter observed by the LIGO detectors through a binary black-hole merger. At the end, we have given an attempt to realize the required inflaton potential in the axion monodromy inflation, and discussed the gravitational waves sourced by the particle production.

Keywords

Black Holes Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Virgo and LIGO Scientific collaborations, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  2. [2]
    Virgo and LIGO Scientific collaborations, B.P. Abbott et al., The rate of binary black hole mergers inferred from advanced LIGO observations surrounding GW150914, Astrophys. J. 833 (2016) 1 [arXiv:1602.03842] [INSPIRE].
  3. [3]
    Virgo and LIGO Scientific collaborations, B.P. Abbott et al., Astrophysical implications of the binary black-hole merger GW150914, Astrophys. J. 818 (2016) L22 [arXiv:1602.03846] [INSPIRE].
  4. [4]
    C.L. Rodriguez, S. Chatterjee and F.A. Rasio, Binary black hole mergers from globular clusters: masses, merger rates and the impact of stellar evolution, Phys. Rev. D 93 (2016) 084029 [arXiv:1602.02444] [INSPIRE].ADSGoogle Scholar
  5. [5]
    K. Belczynski, D.E. Holz, T. Bulik and R. O’Shaughnessy, The first gravitational-wave source from the isolated evolution of two 40-100 Msun stars, Nature 534 (2016) 512 [arXiv:1602.04531] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.E. de Mink and I. Mandel, The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO, Mon. Not. Roy. Astron. Soc. 460 (2016) 3545 [arXiv:1603.02291] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Bird et al., Did LIGO detect dark matter?, Phys. Rev. Lett. 116 (2016) 201301 [arXiv:1603.00464] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Clesse and J. García-Bellido, The clustering of massive primordial black holes as dark matter: measuring their mass distribution with advanced LIGO, Phys. Dark Univ. 10 (2016) 002 [arXiv:1603.05234] [INSPIRE].Google Scholar
  9. [9]
    M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, Primordial black hole scenario for the gravitational-wave event GW150914, Phys. Rev. Lett. 117 (2016) 061101 [arXiv:1603.08338] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B.J. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, New cosmological constraints on primordial black holes, Phys. Rev. D 81 (2010) 104019 [arXiv:0912.5297] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.M. Green, Primordial black holes: sirens of the early universe, Fundam. Theor. Phys. 178 (2015) 129 [arXiv:1403.1198] [INSPIRE].Google Scholar
  12. [12]
    K.-W. Ng, Graviton mode function in inflationary cosmology, Int. J. Mod. Phys. A 11 (1996) 3175 [gr-qc/9311002] [INSPIRE].
  13. [13]
    M. Drees and E. Erfani, Running spectral index and formation of primordial black hole in single field inflation models, JCAP 01 (2012) 035 [arXiv:1110.6052] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C.-M. Lin and K.-W. Ng, Primordial black holes from passive density fluctuations, Phys. Lett. B 718 (2013) 1181 [arXiv:1206.1685] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Linde, S. Mooij and E. Pajer, Gauge field production in supergravity inflation: local non-Gaussianity and primordial black holes, Phys. Rev. D 87 (2013) 103506 [arXiv:1212.1693] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.-L. Cheng, W. Lee and K.-W. Ng, Numerical study of pseudoscalar inflation with an axion-gauge field coupling, Phys. Rev. D 93 (2016) 063510 [arXiv:1508.00251] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Bugaev and P. Klimai, Axion inflation with gauge field production and primordial black holes, Phys. Rev. D 90 (2014) 103501 [arXiv:1312.7435] [INSPIRE].ADSGoogle Scholar
  18. [18]
    E. Erfani, Primordial black holes formation from particle production during inflation, JCAP 04 (2016) 020 [arXiv:1511.08470] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Clesse and J. García-Bellido, Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies, Phys. Rev. D 92 (2015) 023524 [arXiv:1501.07565] [INSPIRE].
  20. [20]
    M. Kawasaki and Y. Tada, Can massive primordial black holes be produced in mild waterfall hybrid inflation?, JCAP 08 (2016) 041 [arXiv:1512.03515] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Kawasaki, N. Sugiyama and T. Yanagida, Primordial black hole formation in a double inflation model in supergravity, Phys. Rev. D 57 (1998) 6050 [hep-ph/9710259] [INSPIRE].
  22. [22]
    J. Yokoyama, Chaotic new inflation and formation of primordial black holes, Phys. Rev. D 58 (1998) 083510 [astro-ph/9802357] [INSPIRE].
  23. [23]
    T. Kawaguchi, M. Kawasaki, T. Takayama, M. Yamaguchi and J. Yokoyama, Formation of intermediate-mass black holes as primordial black holes in the inflationary cosmology with running spectral index, Mon. Not. Roy. Astron. Soc. 388 (2008) 1426 [arXiv:0711.3886] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P.H. Frampton, M. Kawasaki, F. Takahashi and T.T. Yanagida, Primordial black holes as all dark matter, JCAP 04 (2010) 023 [arXiv:1001.2308] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Kawasaki, N. Kitajima and T.T. Yanagida, Primordial black hole formation from an axionlike curvaton model, Phys. Rev. D 87 (2013) 063519 [arXiv:1207.2550] [INSPIRE].ADSGoogle Scholar
  26. [26]
    K. Kohri, C.-M. Lin and T. Matsuda, Primordial black holes from the inflating curvaton, Phys. Rev. D 87 (2013) 103527 [arXiv:1211.2371] [INSPIRE].ADSGoogle Scholar
  27. [27]
    L. Kofman, A.D. Linde, X. Liu, A. Maloney, L. McAllister and E. Silverstein, Beauty is attractive: moduli trapping at enhanced symmetry points, JHEP 05 (2004) 030 [hep-th/0403001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped inflation, Phys. Rev. D 80 (2009) 063533 [arXiv:0902.1006] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M.M. Anber and L. Sorbo, Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D 81 (2010) 043534 [arXiv:0908.4089] [INSPIRE].ADSGoogle Scholar
  30. [30]
    W. Lee, K.-W. Ng, I.-C. Wang and C.-H. Wu, Trapping effects on inflation, Phys. Rev. D 84 (2011) 063527 [arXiv:1101.4493] [INSPIRE].ADSGoogle Scholar
  31. [31]
    E. Bugaev and P. Klimai, Trapping effects in inflation: blue spectrum at small scales, Phys. Rev. D 94 (2016) 023517 [arXiv:1511.06175] [INSPIRE].ADSGoogle Scholar
  32. [32]
    L. Pearce, M. Peloso and L. Sorbo, The phenomenology of trapped inflation, JCAP 11 (2016) 058 [arXiv:1603.08021] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M.M. Anber and L. Sorbo, Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D 81 (2010) 043534 [arXiv:0908.4089] [INSPIRE].ADSGoogle Scholar
  34. [34]
    N. Barnaby, E. Pajer and M. Peloso, Gauge field production in axion inflation: consequences for monodromy, non-Gaussianity in the CMB and gravitational waves at interferometers, Phys. Rev. D 85 (2012) 023525 [arXiv:1110.3327] [INSPIRE].ADSGoogle Scholar
  35. [35]
    A.D. Linde, Chaotic inflating universe, JETP Lett. 38 (1983) 176 [Pisma Zh. Eksp. Teor. Fiz. 38 (1983) 149] [INSPIRE].
  36. [36]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  37. [37]
    T. Fujita, R. Namba, Y. Tada, N. Takeda and H. Tashiro, Consistent generation of magnetic fields in axion inflation models, JCAP 05 (2015) 054 [arXiv:1503.05802] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    E. Silverstein, TASI lectures on cosmological observables and string theory, in Proceedings of the 2015 Theoretical Advanced Study Institute in Elementary Particle Physics, World Scientific, Singapore (2017), pg. 545 [arXiv:1606.03640] [INSPIRE].
  39. [39]
    R. Flauger, L. McAllister, E. Silverstein and A. Westphal, Drifting oscillations in axion monodromy, arXiv:1412.1814 [INSPIRE].
  40. [40]
    N. Barnaby and M. Peloso, Large non-Gaussianity in axion inflation, Phys. Rev. Lett. 106 (2011) 181301 [arXiv:1011.1500] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    N. Barnaby, R. Namba and M. Peloso, Phenomenology of a pseudo-scalar inflaton: naturally large non-Gaussianity, JCAP 04 (2011) 009 [arXiv:1102.4333] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    L. Sorbo, Parity violation in the cosmic microwave background from a pseudoscalar inflaton, JCAP 06 (2011) 003 [arXiv:1101.1525] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    L. Lentati et al., European pulsar timing array limits on an isotropic stochastic gravitational-wave background, Mon. Not. Roy. Astron. Soc. 453 (2015) 2576 [arXiv:1504.03692] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    NANOGrav collaboration, Z. Arzoumanian et al., The NANOGrav nine-year data set: limits on the isotropic stochastic gravitational wave background, Astrophys. J. 821 (2016) 13 [arXiv:1508.03024] [INSPIRE].
  45. [45]
    R.M. Shannon et al., Gravitational waves from binary supermassive black holes missing in pulsar observations, Science 349 (2015) 1522 [arXiv:1509.07320] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    G. Janssen et al., Gravitational wave astronomy with the SKA, in Advancing Astrophysics with the Square Kilometre Array, Giardini Naxos Italy June 9-13 2014 [PoS (AASKA14) 037] [arXiv:1501.00127] [INSPIRE].
  47. [47]
    P.D. Meerburg and E. Pajer, Observational constraints on gauge field production in axion inflation, JCAP 02 (2013) 017 [arXiv:1203.6076] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan
  2. 2.Institute of Physics, Academia SinicaTaipeiTaiwan
  3. 3.Institute of Astronomy and Astrophysics, Academia SinicaTaipeiTaiwan

Personalised recommendations