Advertisement

Defects and boundary RG flows in \( \mathbb{C}/{\mathbb{Z}}_d \)

  • Melanie Becker
  • Yaniel CabreraEmail author
  • Daniel Robbins
Open Access
Regular Article - Theoretical Physics

Abstract

We show that topological defects in the language of Landau-Ginzburg models carry information about the RG flow between the non-compact orbifolds \( \mathbb{C}/{\mathbb{Z}}_d \). We show that such defects correctly implement the bulk-induced RG flow on the boundary.

Keywords

D-branes Renormalization Group Superspaces Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Dorey, M. Pillin, R. Tateo and G.M.T. Watts, One point functions in perturbed boundary conformal field theories, Nucl. Phys. B 594 (2001) 625 [hep-th/0007077] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    C.A. Keller, Brane backreactions and the Fischler-Susskind mechanism in conformal field theory, JHEP 12 (2007) 046 [arXiv:0709.1076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    K. Hori, Boundary RG flows of N = 2 minimal models, in Calabi-Yau varieties and mirror symmetry. Proceedings, Workshop, Mirror Symmetry 5, Banff Canada, 6-11 December 2003, pg. 381 [hep-th/0401139] [INSPIRE].
  4. [4]
    S. Fredenhagen, M.R. Gaberdiel and C.A. Keller, Bulk induced boundary perturbations, J. Phys. A 40 (2007) F17 [hep-th/0609034] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  5. [5]
    I. Brunner and D. Roggenkamp, Defects and bulk perturbations of boundary Landau-Ginzburg orbifolds, JHEP 04 (2008) 001 [arXiv:0712.0188] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Gaiotto, Domain walls for two-dimensional renormalization group flows, JHEP 12 (2012) 103 [arXiv:1201.0767] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    H. Enger, A. Recknagel and D. Roggenkamp, Permutation branes and linear matrix factorisations, JHEP 01 (2006) 087 [hep-th/0508053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    I. Brunner and D. Roggenkamp, B-type defects in Landau-Ginzburg models, JHEP 08 (2007) 093 [arXiv:0707.0922] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    K. Hori, Linear models of supersymmetric D-branes, in Symplectic geometry and mirror symmetry. Proceedings, 4th KIAS Annual International Conference, Seoul South Korea, 14-18 August 2000, pg. 111 [hep-th/0012179] [INSPIRE].
  10. [10]
    C. Vafa, Mirror symmetry and closed string tachyon condensation, hep-th/0111051 [INSPIRE].
  11. [11]
    J. Fuchs, M.R. Gaberdiel, I. Runkel and C. Schweigert, Topological defects for the free boson CFT, J. Phys. A 40 (2007) 11403 [arXiv:0705.3129] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  13. [13]
    J.A. Harvey, D. Kutasov, E.J. Martinec and G.W. Moore, Localized tachyons and RG flows, hep-th/0111154 [INSPIRE].
  14. [14]
    A. Adams, J. Polchinski and E. Silverstein, Don’t panic! Closed string tachyons in ALE space-times, JHEP 10 (2001) 029 [hep-th/0108075] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    I. Brunner, M. Herbst, W. Lerche and B. Scheuner, Landau-Ginzburg realization of open string TFT, JHEP 11 (2006) 043 [hep-th/0305133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Kapustin and Y. Li, D-branes in Landau-Ginzburg models and algebraic geometry, JHEP 12 (2003) 005 [hep-th/0210296] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, math/0302304 [INSPIRE].
  18. [18]
    S. Govindarajan and H. Jockers, Effective superpotentials for B-branes in Landau-Ginzburg models, JHEP 10 (2006) 060 [hep-th/0608027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    C.I. Lazaroiu, On the boundary coupling of topological Landau-Ginzburg models, JHEP 05 (2005) 037 [hep-th/0312286] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    K. Hori, Trieste lectures on mirror symmetry, in Superstrings and related matters. Proceedings, Spring School, http://www.ictp.trieste.it/∼pub off/lectures/lns013/ Hori/Hori.pdf, Trieste Italy, 18-26 March 2002, pg. 109 [INSPIRE].
  21. [21]
    K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].
  22. [22]
    P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in Progress in string theory. Proceedings, Summer School, TASI 2003, Boulder U.S.A., 2-27 June 2003, pg. 1 [hep-th/0403166] [INSPIRE].
  23. [23]
    C. Bachas and I. Brunner, Fusion of conformal interfaces, JHEP 02 (2008) 085 [arXiv:0712.0076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.George and Cynthia Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  2. 2.Department of PhysicsUniversity at AlbanyAlbanyU.S.A.

Personalised recommendations