Advertisement

Holographic entanglement for Chern-Simons terms

  • Tatsuo Azeyanagi
  • R. Loganayagam
  • Gim Seng Ng
Open Access
Regular Article - Theoretical Physics

Abstract

We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS2k+1. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong’s derivation applied to the corresponding anomaly polynomial. In lower dimensions (k = 1, 2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k ≥ 3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

Keywords

1/N Expansion AdS-CFT Correspondence Anomalies in Field and String Theories Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Bianchi and R.C. Myers, On the Architecture of Spacetime Geometry, Class. Quant. Grav. 31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  8. [8]
    X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Camps, Generalized entropy and higher derivative Gravity, JHEP 03 (2014) 070 [arXiv:1310.6659] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Ogawa and T. Takayanagi, Higher Derivative Corrections to Holographic Entanglement Entropy for AdS Solitons, JHEP 10 (2011) 147 [arXiv:1107.4363] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Entanglement Entropy in Lovelock Gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    L.-Y. Hung, R.C. Myers and M. Smolkin, On Holographic Entanglement Entropy and Higher Curvature Gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Bhattacharyya, A. Kaviraj and A. Sinha, Entanglement entropy in higher derivative holography, JHEP 08 (2013) 012 [arXiv:1305.6694] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Bhattacharyya, M. Sharma and A. Sinha, On generalized gravitational entropy, squashed cones and holography, JHEP 01 (2014) 021 [arXiv:1308.5748] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional Geometry of Squashed Cones, Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].ADSGoogle Scholar
  17. [17]
    R.-X. Miao, A Note on Holographic Weyl Anomaly and Entanglement Entropy, Class. Quant. Grav. 31 (2014) 065009 [arXiv:1309.0211] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Bhattacharyya and M. Sharma, On entanglement entropy functionals in higher derivative gravity theories, JHEP 10 (2014) 130 [arXiv:1405.3511] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Banerjee, A. Bhattacharyya, A. Kaviraj, K. Sen and A. Sinha, Constraining gravity using entanglement in AdS/CFT, JHEP 05 (2014) 029 [arXiv:1401.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Bueno and R.C. Myers, Corner contributions to holographic entanglement entropy, JHEP 08 (2015) 068 [arXiv:1505.07842] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J. Camps and W.R. Kelly, Generalized gravitational entropy without replica symmetry, JHEP 03 (2015) 061 [arXiv:1412.4093] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J. Erdmenger, M. Flory and C. Sleight, Conditions on holographic entangling surfaces in higher curvature gravity, JHEP 06 (2014) 104 [arXiv:1401.5075] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A.C. Wall, A Second Law for Higher Curvature Gravity, Int. J. Mod. Phys. D 24 (2015) 1544014 [arXiv:1504.08040] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Bhattacharjee, S. Sarkar and A.C. Wall, Holographic entropy increases in quadratic curvature gravity, Phys. Rev. D 92 (2015) 064006 [arXiv:1504.04706] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    A.F. Astaneh, A. Patrushev and S.N. Solodukhin, Entropy vs Gravitational Action: Do Total Derivatives Matter?, arXiv:1411.0926 [INSPIRE].
  26. [26]
    A.F. Astaneh, A. Patrushev and S.N. Solodukhin, Entropy discrepancy and total derivatives in trace anomaly, Phys. Lett. B 751 (2015) 227 [arXiv:1412.0452] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.F. Astaneh and S.N. Solodukhin, The Wald entropy and 6d conformal anomaly, Phys. Lett. B 749 (2015) 272 [arXiv:1504.01653] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R.-X. Miao and W.-z. Guo, Holographic Entanglement Entropy for the Most General Higher Derivative Gravity, JHEP 08 (2015) 031 [arXiv:1411.5579] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    R.-X. Miao, Universal Terms of Entanglement Entropy for 6d CFTs, JHEP 10 (2015) 049 [arXiv:1503.05538] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    Y. Huang and R.-X. Miao, A note on the resolution of the entropy discrepancy, Phys. Lett. B 749 (2015) 489 [arXiv:1504.02301] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  32. [32]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  33. [33]
    Y. Tachikawa, Black hole entropy in the presence of Chern-Simons terms, Class. Quant. Grav. 24 (2007) 737 [hep-th/0611141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    L. Bonora, M. Cvitan, P. Dominis Prester, S. Pallua and I. Smolic, Gravitational Chern-Simons Lagrangians and black hole entropy, JHEP 07 (2011) 085 [arXiv:1104.2523] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S.N. Solodukhin, Holography with gravitational Chern-Simons, Phys. Rev. D 74 (2006) 024015 [hep-th/0509148] [INSPIRE].ADSGoogle Scholar
  36. [36]
    P. Kraus, Lectures on black holes and the AdS 3 /CF T 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].ADSzbMATHGoogle Scholar
  37. [37]
    B. Sahoo and A. Sen, BTZ black hole with Chern-Simons and higher derivative terms, JHEP 07 (2006) 008 [hep-th/0601228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    T. Azeyanagi, R. Loganayagam, G.S. Ng and M.J. Rodriguez, Covariant Noether Charge for Higher Dimensional Chern-Simons Terms, JHEP 05 (2015) 041 [arXiv:1407.6364] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  39. [39]
    K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP 05 (2014) 134 [arXiv:1310.7024] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Azeyanagi, R. Loganayagam and G.S. Ng, Anomalies, Chern-Simons Terms and Black Hole Entropy, JHEP 09 (2015) 121 [arXiv:1505.02816] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    T. Azeyanagi, R. Loganayagam, G.S. Ng and M.J. Rodriguez, Holographic Thermal Helicity, JHEP 08 (2014) 040 [arXiv:1311.2940] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 [arXiv:1405.2792] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.-R. Sun, Note on Chern-Simons Term Correction to Holographic Entanglement Entropy, JHEP 05 (2009) 061 [arXiv:0810.0967] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Alishahiha, A.F. Astaneh and M.R. Mohammadi Mozaffar, Entanglement Entropy for Logarithmic Conformal Field Theory, Phys. Rev. D 89 (2014) 065023 [arXiv:1310.4294] [INSPIRE].ADSzbMATHGoogle Scholar
  45. [45]
    W.-z. Guo and R.-x. Miao, Entropy for gravitational Chern-Simons terms by squashed cone method, JHEP 04 (2016) 006 [arXiv:1506.08397] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    T. Nishioka and A. Yarom, Anomalies and Entanglement Entropy, JHEP 03 (2016) 077 [arXiv:1509.04288] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    N. Iqbal and A.C. Wall, Anomalies of the Entanglement Entropy in Chiral Theories, JHEP 10 (2016) 111 [arXiv:1509.04325] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Camps, Gravity duals of boundary cones, JHEP 09 (2016) 139 [arXiv:1605.08588] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    A.C. Wall, Testing the Generalized Second Law in 1+1 dimensional Conformal Vacua: An Argument for the Causal Horizon, Phys. Rev. D 85 (2012) 024015 [arXiv:1105.3520] [INSPIRE].ADSGoogle Scholar
  50. [50]
    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  51. [51]
    C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M5-branes, Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    K. Jensen, R. Loganayagam and A. Yarom, Chern-Simons terms from thermal circles and anomalies, JHEP 05 (2014) 110 [arXiv:1311.2935] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    V. Rosenhaus and M. Smolkin, Entanglement Entropy: A Perturbative Calculation, JHEP 12 (2014) 179 [arXiv:1403.3733] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Tatsuo Azeyanagi
    • 1
  • R. Loganayagam
    • 2
  • Gim Seng Ng
    • 3
  1. 1.Département de PhysiqueEcole Normale Supérieure, CNRSParisFrance
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  3. 3.Department of PhysicsMcGill UniversityMontréalCanada

Personalised recommendations