Advertisement

Journal of High Energy Physics

, 2016:167 | Cite as

The unitary conformal field theory behind 2D Asymptotic Safety

  • Andreas NinkEmail author
  • Martin Reuter
Open Access
Regular Article - Theoretical Physics

Abstract

Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d > 2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c = 25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d > 2 dimensions and Polyakov’s induced gravity action in two dimensions.

Keywords

Models of Quantum Gravity 2D Gravity Nonperturbative Effects Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity, an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1980), pg. 790.Google Scholar
  2. [2]
    Y. Nakayama, Scale invariance vs conformal invariance, Phys. Rept. 569 (2015) 1 [arXiv:1302.0884] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    D. Becker and M. Reuter, En route to background independence: broken split-symmetry and how to restore it with bi-metric average actions, Annals Phys. 350 (2014) 225 [arXiv:1404.4537] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions, Commun. Math. Phys. 31 (1973) 83 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions. 2, Commun. Math. Phys. 42 (1975) 281 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    F. Strocchi, Selected topics on the general properties of quantum field theory, World Scientific, Singapore (1993).Google Scholar
  7. [7]
    J. Glimm and A. Jaffe, Quantum physics, Springer, New York U.S.A. (1987).CrossRefGoogle Scholar
  8. [8]
    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    E. Manrique and M. Reuter, Bare action and regularized functional integral of asymptotically safe quantum gravity, Phys. Rev. D 79 (2009) 025008 [arXiv:0811.3888] [INSPIRE].ADSGoogle Scholar
  10. [10]
    G.P. Vacca and L. Zambelli, Functional RG flow equation: regularization and coarse-graining in phase space, Phys. Rev. D 83 (2011) 125024 [arXiv:1103.2219] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T.R. Morris, The exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    T.R. Morris and Z.H. Slade, Solutions to the reconstruction problem in asymptotic safety, JHEP 11 (2015) 094 [arXiv:1507.08657] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    M. Reuter and C. Wetterich, Average action for the Higgs model with Abelian gauge symmetry, Nucl. Phys. B 391 (1993) 147 [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    M. Reuter and C. Wetterich, Running gauge coupling in three-dimensions and the electroweak phase transition, Nucl. Phys. B 408 (1993) 91 [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    M. Reuter and C. Wetterich, Effective average action for gauge theories and exact evolution equations, Nucl. Phys. B 417 (1994) 181 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    M. Reuter and C. Wetterich, Exact evolution equation for scalar electrodynamics, Nucl. Phys. B 427 (1994) 291 [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    M. Niedermaier and M. Reuter, The asymptotic safety scenario in quantum gravity, Living Rev. Rel. 9 (2006) 5.Google Scholar
  19. [19]
    R. Percacci, Asymptotic safety, in Approaches to quantum gravity: towards a new understanding of space, time and matter, D. Oriti ed., Cambridge University Press, Cambridge U.K. (2009) [arXiv:0709.3851] [INSPIRE].
  20. [20]
    A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    M. Reuter and F. Saueressig, Quantum Einstein gravity, New J. Phys. 14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    A. Codello and G. D’Odorico, Scaling and renormalization in two dimensional quantum gravity, Phys. Rev. D 92 (2015) 024026 [arXiv:1412.6837] [INSPIRE].ADSGoogle Scholar
  23. [23]
    E. Manrique and M. Reuter, Bimetric truncations for quantum Einstein gravity and asymptotic safety, Annals Phys. 325 (2010) 785 [arXiv:0907.2617] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    A. Nink and M. Reuter, On the physical mechanism underlying asymptotic safety, JHEP 01 (2013) 062 [arXiv:1208.0031] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    A. Nink and M. Reuter, On quantum gravity, asymptotic safety and paramagnetic dominance, arXiv:1212.4325 [INSPIRE].
  26. [26]
    A. Nink, Field parametrization dependence in asymptotically safe quantum gravity, Phys. Rev. D 91 (2015) 044030 [arXiv:1410.7816] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    M. Reuter and C. Wetterich, Quantum Liouville field theory as solution of a flow equation, Nucl. Phys. B 506 (1997) 483 [hep-th/9605039] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    A. Nink and M. Reuter, The reconstruction problem in 2D Asymptotic Safety, in preparation.Google Scholar
  30. [30]
    Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer, Tokyo Japan (1992).CrossRefzbMATHGoogle Scholar
  31. [31]
    B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, Modern geometry — methods and applications, 2nd edition, Springer, New York U.S.A. (1992).Google Scholar
  32. [32]
    J. Polchinski, String theory — volume 1, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  33. [33]
    H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka J. Math. 12 (1960) 21.MathSciNetzbMATHGoogle Scholar
  34. [34]
    N.S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968) 265.
  35. [35]
    T. Aubin, Métriques riemanniennes et courbure (in French), J. Diff. Geom. 4 (1970) 383.MathSciNetzbMATHGoogle Scholar
  36. [36]
    T. Aubin, Equations différentielles nonlinéaires et problème de Yamabe concernant la courbure scalaire (in French), J. Math. Pures Appl. 55 (1976) 269.MathSciNetzbMATHGoogle Scholar
  37. [37]
    R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984) 479.MathSciNetzbMATHGoogle Scholar
  38. [38]
    P. Nurowski and J.F. Plebanski, Nonvacuum twisting type N metrics, Class. Quant. Grav. 18 (2001) 341 [gr-qc/0007017] [INSPIRE].
  39. [39]
    D.M. Capper and D. Kimber, An ambiguity in one loop quantum gravity, J. Phys. A 13 (1980) 3671 [INSPIRE].ADSGoogle Scholar
  40. [40]
    R.B. Mann and S.F. Ross, The D → 2 limit of general relativity, Class. Quant. Grav. 10 (1993) 1405 [gr-qc/9208004] [INSPIRE].
  41. [41]
    R. Jackiw, Weyl symmetry and the Liouville theory, Theor. Math. Phys. 148 (2006) 941 [Teor. Mat. Fiz. 148 (2006) 80] [hep-th/0511065] [INSPIRE].
  42. [42]
    D. Grumiller and R. Jackiw, Liouville gravity from Einstein gravity, in Recent developments in theoretical physics, S. Gosh and G. Kar eds., World Scientific, Singapore (2010), pg. 331 [arXiv:0712.3775] [INSPIRE].
  43. [43]
    P.O. Mazur and E. Mottola, Weyl cohomology and the effective action for conformal anomalies, Phys. Rev. D 64 (2001) 104022 [hep-th/0106151] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    H.-S. Tsao, Conformal anomalies in a general background metric, Phys. Lett. B 68 (1977) 79 [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    L.S. Brown, Stress tensor trace anomaly in a gravitational metric: scalar fields, Phys. Rev. D 15 (1977) 1469 [INSPIRE].ADSGoogle Scholar
  46. [46]
    R. Gastmans, R. Kallosh and C. Truffin, Quantum gravity near two-dimensions, Nucl. Phys. B 133 (1978) 417 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    S.M. Christensen and M.J. Duff, Quantum gravity in two + \( \epsilon \) dimensions, Phys. Lett. B 79 (1978) 213 [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    H. Kawai and M. Ninomiya, Renormalization group and quantum gravity, Nucl. Phys. B 336 (1990) 115 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    I. Jack and D.R.T. Jones, The \( \epsilon \) -expansion of two-dimensional quantum gravity, Nucl. Phys. B 358 (1991) 695 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  50. [50]
    H. Kawai, Y. Kitazawa and M. Ninomiya, Quantum gravity in 2+ dimensions, Prog. Theor. Phys. Supp. 114 (1993) 149.CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    H. Kawai, Y. Kitazawa and M. Ninomiya, Scaling exponents in quantum gravity near two-dimensions, Nucl. Phys. B 393 (1993) 280 [hep-th/9206081] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    H. Kawai, Y. Kitazawa and M. Ninomiya, Ultraviolet stable fixed point and scaling relations in (2 + ϵ)-dimensional quantum gravity, Nucl. Phys. B 404 (1993) 684 [hep-th/9303123] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    H. Kawai, Y. Kitazawa and M. Ninomiya, Renormalizability of quantum gravity near two-dimensions, Nucl. Phys. B 467 (1996) 313 [hep-th/9511217] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    T. Aida, Y. Kitazawa, H. Kawai and M. Ninomiya, Conformal invariance and renormalization group in quantum gravity near two-dimensions, Nucl. Phys. B 427 (1994) 158 [hep-th/9404171] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    J. Nishimura, S. Tamura and A. Tsuchiya, R 2 gravity in (2 + ϵ)-dimensional quantum gravity, Mod. Phys. Lett. A 9 (1994) 3565 [hep-th/9405059] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    T. Aida and Y. Kitazawa, Two loop prediction for scaling exponents in (2 + ϵ)-dimensional quantum gravity, Nucl. Phys. B 491 (1997) 427 [hep-th/9609077] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  57. [57]
    K. Falls, Renormalization of Newton’s constant, Phys. Rev. D 92 (2015) 124057 [arXiv:1501.05331] [INSPIRE].ADSGoogle Scholar
  58. [58]
    K. Falls, Critical scaling in quantum gravity from the renormalisation group, arXiv:1503.06233 [INSPIRE].
  59. [59]
    M. Demmel and A. Nink, Connections and geodesics in the space of metrics, Phys. Rev. D 92 (2015) 104013 [arXiv:1506.03809] [INSPIRE].ADSGoogle Scholar
  60. [60]
    J.P.S. Lemos and P.M. Sa, The two-dimensional analog of general relativity, Class. Quant. Grav. 11 (1994) L11 [gr-qc/9310041] [INSPIRE].
  61. [61]
    N. Ohta and R. Percacci, Higher derivative gravity and asymptotic safety in diverse dimensions, Class. Quant. Grav. 31 (2014) 015024 [arXiv:1308.3398] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    A.H. Chamseddine and M. Reuter, Induced two-dimensional quantum gravity and SL(2, R) Kac-Moody current algebra, Nucl. Phys. B 317 (1989) 757 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  63. [63]
    E. D’Hoker, Lecture notes on 2D quantum gravity and Liouville theory, in Proceedings, Particle physics, Campos do Jordao Brazil (1991), pg. 282 [UCLA-91-TEP-35] [INSPIRE].
  64. [64]
    P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory, in Proceedings, Recent directions in particle theory, Boulder U.S.A. (1992), pg. 277 [hep-th/9304011] [INSPIRE].
  65. [65]
    Y. Nakayama, Liouville field theory: a decade after the revolution, Int. J. Mod. Phys. A 19 (2004) 2771 [hep-th/0402009] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    E. Abdalla, M.C.B. Abdalla, D. Dalmazi and A. Zadra, 2D-gravity in non-critical strings: discrete and continuum approaches, Springer, New York U.S.A. (1994).zbMATHGoogle Scholar
  67. [67]
    A. Codello, G. D’Odorico and C. Pagani, A functional RG equation for the c-function, JHEP 07 (2014) 040 [arXiv:1312.7097] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    A. Chodos and C.B. Thorn, Making the massless string massive, Nucl. Phys. B 72 (1974) 509 [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  70. [70]
    V.S. Dotsenko and V.A. Fateev, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1, Nucl. Phys. B 251 (1985) 691 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  71. [71]
    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, New York U.S.A. (1997).CrossRefzbMATHGoogle Scholar
  72. [72]
    G. Mussardo, Statistical field theory: an introduction to exactly solved models in statistical physics, Oxford University Press, Oxford U.K. (2010).Google Scholar
  73. [73]
    M. Schottenloher, A mathematical introduction to conformal field theory, Springer, Berlin Germany (2008).zbMATHGoogle Scholar
  74. [74]
    S.L. Adler, Einstein gravity as a symmetry breaking effect in quantum field theory, Rev. Mod. Phys. 54 (1982) 729 [Erratum ibid. 55 (1983) 837] [INSPIRE].
  75. [75]
    J. Polchinski, A two-dimensional model for quantum gravity, Nucl. Phys. B 324 (1989) 123 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  76. [76]
    J.D. Bjorken and S.D. Drell, Relativistic quantum fields, McGraw-Hill, New York U.S.A. (1965).Google Scholar
  77. [77]
    E. Gozzi, E. Cattaruzza and C. Pagani, Path integrals for pedestrians, World Scientific, Singapore (2015).Google Scholar
  78. [78]
    E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
  79. [79]
    J. Ambjørn and R. Loll, Nonperturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys. B 536 (1998) 407 [hep-th/9805108] [INSPIRE].CrossRefADSGoogle Scholar
  80. [80]
    H. Gies, B. Knorr and S. Lippoldt, Generalized parametrization dependence in quantum gravity, Phys. Rev. D 92 (2015) 084020 [arXiv:1507.08859] [INSPIRE].ADSGoogle Scholar
  81. [81]
    N. Ohta, R. Percacci and G.P. Vacca, Flow equation for f (R) gravity and some of its exact solutions, Phys. Rev. D 92 (2015) 061501 [arXiv:1507.00968] [INSPIRE].ADSGoogle Scholar
  82. [82]
    N. Ohta, R. Percacci and G.P. Vacca, Renormalization group equation and scaling solutions for f (R) gravity in exponential parametrization, arXiv:1511.09393 [INSPIRE].
  83. [83]
    M. Reuter and H. Weyer, Background independence and asymptotic safety in conformally reduced gravity, Phys. Rev. D 79 (2009) 105005 [arXiv:0801.3287] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M. Reuter and H. Weyer, Conformal sector of quantum Einstein gravity in the local potential approximation: non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance, Phys. Rev. D 80 (2009) 025001 [arXiv:0804.1475] [INSPIRE].ADSGoogle Scholar
  85. [85]
    R. Jackiw, C. Núñez and S.-Y. Pi, Quantum relaxation of the cosmological constant, Phys. Lett. A 347 (2005) 47 [hep-th/0502215] [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    P.F. Machado and R. Percacci, Conformally reduced quantum gravity revisited, Phys. Rev. D 80 (2009) 024020 [arXiv:0904.2510] [INSPIRE].ADSGoogle Scholar
  87. [87]
    H.-J. Otto and G. Weigt, Construction of exponential Liouville field operators for closed string models, Z. Phys. C 31 (1986) 219 [INSPIRE].ADSMathSciNetGoogle Scholar
  88. [88]
    H. Dorn and H.-J. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  89. [89]
    Y. Kazama and H. Nicolai, On the exact operator formalism of two-dimensional Liouville quantum gravity in Minkowski space-time, Int. J. Mod. Phys. A 9 (1994) 667 [hep-th/9305023] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  90. [90]
    P. Dona and R. Percacci, Functional renormalization with fermions and tetrads, Phys. Rev. D 87 (2013) 045002 [arXiv:1209.3649] [INSPIRE].ADSGoogle Scholar
  91. [91]
    P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev. D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].ADSGoogle Scholar
  92. [92]
    F. David, Conformal field theories coupled to 2D gravity in the conformal gauge, Mod. Phys. Lett. A 3 (1988) 1651 [INSPIRE].CrossRefADSGoogle Scholar
  93. [93]
    J. Distler and H. Kawai, Conformal field theory and 2D quantum gravity or who’s afraid of Joseph Liouville?, Nucl. Phys. B 321 (1989) 509 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  94. [94]
    Y. Watabiki, Analytic study of fractal structure of quantized surface in two-dimensional quantum gravity, Prog. Theor. Phys. Suppl. 114 (1993) 1 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  95. [95]
    A.M. Polyakov, Quantum gravity in two-dimensions, Mod. Phys. Lett. A 2 (1987) 893 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  96. [96]
    V.G. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Fractal structure of 2D quantum gravity, Mod. Phys. Lett. A 3 (1988) 819 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  97. [97]
    F. David and E. Guitter, Instabilities in membrane models, Europhys. Lett. 3 (1987) 1169 [INSPIRE].CrossRefADSGoogle Scholar
  98. [98]
    F. David and E. Guitter, Rigid random surfaces at large d, Nucl. Phys. B 295 (1988) 332 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  99. [99]
    S.R. Das, S. Naik and S.R. Wadia, Quantization of the Liouville mode and string theory, Mod. Phys. Lett. A 4 (1989) 1033 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  100. [100]
    J.-E. Daum and M. Reuter, Effective potential of the conformal factor: gravitational average action and dynamical triangulations, Adv. Sci. Lett. 2 (2009) 255 [arXiv:0806.3907] [INSPIRE].CrossRefGoogle Scholar
  101. [101]
    O. Lauscher and M. Reuter, Fractal spacetime structure in asymptotically safe gravity, JHEP 10 (2005) 050 [hep-th/0508202] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  102. [102]
    M. Reuter and F. Saueressig, Fractal space-times under the microscope: a renormalization group view on Monte Carlo data, JHEP 12 (2011) 012 [arXiv:1110.5224] [INSPIRE].CrossRefADSGoogle Scholar
  103. [103]
    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative quantum gravity, Phys. Rept. 519 (2012) 127 [arXiv:1203.3591] [INSPIRE].CrossRefADSGoogle Scholar
  104. [104]
    J. Ambjørn, K.N. Anagnostopoulos and R. Loll, Crossing the c = 1 barrier in 2D Lorentzian quantum gravity, Phys. Rev. D 61 (2000) 044010 [hep-lat/9909129] [INSPIRE].
  105. [105]
    J. Ambjørn, K.N. Anagnostopoulos, R. Loll and I. Pushkina, Shaken, but not stirred: Potts model coupled to quantum gravity, Nucl. Phys. B 807 (2009) 251 [arXiv:0806.3506] [INSPIRE].CrossRefADSGoogle Scholar
  106. [106]
    J. Ambjørn, A. Görlich, J. Jurkiewicz and H. Zhang, The spectral dimension in 2D CDT gravity coupled to scalar fields, Mod. Phys. Lett. A 30 (2015) 1550077 [arXiv:1412.3434] [INSPIRE].CrossRefADSGoogle Scholar
  107. [107]
    J. Ambjørn, A. Görlich, J. Jurkiewicz and H. Zhang, A c = 1 phase transition in two-dimensional CDT/Hořava-Lifshitz gravity?, Phys. Lett. B 743 (2015) 435 [arXiv:1412.3873] [INSPIRE].CrossRefADSGoogle Scholar
  108. [108]
    J. Ambjørn, A. Görlich, J. Jurkiewicz and H. Zhang, The microscopic structure of 2D CDT coupled to matter, Phys. Lett. B 746 (2015) 359 [arXiv:1503.01636] [INSPIRE].CrossRefADSGoogle Scholar
  109. [109]
    J.-L. Gervais, Critical dimensions for noncritical strings, Phys. Lett. B 243 (1990) 85 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  110. [110]
    J.L. Gervais, Solving the strongly coupled 2D gravity: 1. Unitary truncation and quantum group structure, Commun. Math. Phys. 138 (1991) 301 [INSPIRE].
  111. [111]
    J.L. Gervais, On the algebraic structure of quantum gravity in two-dimensions, Int. J. Mod. Phys. A 6 (1991) 2805 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  112. [112]
    J.L. Gervais, Physical features of strongly coupled 2D gravity, Phys. Lett. B 255 (1991) 22 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  113. [113]
    J.-L. Gervais, The new physics of strongly coupled 2D gravity, in Future perspectives in string theory: strings ’95, USC, Los Angeles U.S.A. (1995), pg. 200 [hep-th/9506040] [INSPIRE].
  114. [114]
    J.-L. Gervais, Chirality deconfinement beyond the c = 1 barrier of two-dimensional gravity, in Low-dimensional applications of quantum field theory, NATO ASI series, Cargese France, Springer Germany (1997), pg. 145 [hep-th/9606151] [INSPIRE].
  115. [115]
    A.O. Barvinsky and G.A. Vilkovisky, Beyond the Schwinger-Dewitt technique: converting loops into trees and in-in currents, Nucl. Phys. B 282 (1987) 163 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  116. [116]
    A.O. Barvinsky and G.A. Vilkovisky, Covariant perturbation theory. 2: second order in the curvature. General algorithms, Nucl. Phys. B 333 (1990) 471 [INSPIRE].
  117. [117]
    A.O. Barvinsky and G.A. Vilkovisky, Covariant perturbation theory. 3: spectral representations of the third order form-factors, Nucl. Phys. B 333 (1990) 512 [INSPIRE].
  118. [118]
    G.A. Vilkovisky, Heat kernel: rencontre entre physiciens et mathématiciens (in French), in Meeting between Physicists and Mathematicians, Strasbourg France December 1991, CERN-TH-6392-92, (1992).
  119. [119]
    D. Fursaev and D. Vassilevich, Operators, geometry and quanta, Springer, Germany (2011).CrossRefzbMATHGoogle Scholar
  120. [120]
    J.S. Dowker, A note on Polyakov’s nonlocal form of the effective action, Class. Quant. Grav. 11 (1994) L7 [hep-th/9309127] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  121. [121]
    M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387 [hep-th/9308075] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  122. [122]
    C. Itzykson and J.-M. Drouffe, Statistical field theory, volume 2, Cambridge University Press, Cambridge U.K. (1989).Google Scholar
  123. [123]
    S. Chaudhuri, H. Kawai and S.-H. Henry Tye, Path integral formulation of closed strings, Phys. Rev. D 36 (1987) 1148 [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Physics, PRISMA & MITPJohannes Gutenberg University MainzMainzGermany

Personalised recommendations