Advertisement

Journal of High Energy Physics

, 2016:142 | Cite as

Hard diffraction with dynamic gap survival

  • Christine O. RasmussenEmail author
  • Torbjörn Sjöstrand
Open Access
Regular Article - Theoretical Physics

Abstract

We present a new framework for the modelling of hard diffraction in pp and \( \mathrm{p}\overline{\mathrm{p}} \) collisions. It starts from the the approach pioneered by Ingelman and Schlein, wherein the single diffractive cross section is factorized into a Pomeron flux and a Pomeron PDF. To this it adds a dynamically calculated rapidity gap survival factor, derived from the modelling of multiparton interactions. This factor is not relevant for diffraction in ep collisions, giving non-universality between HERA and Tevatron diffractive event rates. The model has been implemented in Pythia 8 and provides a complete description of the hadronic state associated with any hard single diffractive process. Comparisons with \( \mathrm{p}\overline{\mathrm{p}} \) and pp data reveal improvement in the description of single diffractive events.

Keywords

QCD Phenomenology Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.L. Good and W.D. Walker, Diffraction disssociation of beam particles, Phys. Rev. 120 (1960) 1857 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    M.L. Perl, High Energy Hadronic Physics, Wiley-Interscience (1974) [ISBN: 0-471-68049-4].Google Scholar
  3. [3]
    J.R. Forshaw and D.A. Ross, Quantum Chromodynamics and the Pomeron, Cambridge University Press (1997) [ISBN: 0 521 56880 3].Google Scholar
  4. [4]
    H. Jung, Monte Carlo implementations of diffraction at HERA, hep-ph/9809374 [INSPIRE].
  5. [5]
    V. Barone and E. Predazzi, High-Energy Particle Diffraction, Springer (2002) [ISBN: 3-540-42107-6].Google Scholar
  6. [6]
    S. Donnachie, H.G. Dosch, O. Nachtmann and P. Landshoff, Pomeron Physics and QCD, Cambridge University Press (2002) [ISBN: 0 521 78039 X].Google Scholar
  7. [7]
    H. Jung, R.B. Peschanski and C. Royon, The Diffractive interactions working group summary, Acta Phys. Polon. B 33 (2002) 3645 [hep-ph/0209143] [INSPIRE].
  8. [8]
    M.G. Albrow, T.D. Coughlin and J.R. Forshaw, Central Exclusive Particle Production at High Energy Hadron Colliders, Prog. Part. Nucl. Phys. 65 (2010) 149 [arXiv:1006.1289] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    G. Ingelman and P.E. Schlein, Jet Structure in High Mass Diffractive Scattering, Phys. Lett. B 152 (1985) 256 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    UA8 collaboration, R. Bonino et al., Evidence for Transverse Jets in High Mass Diffraction, Phys. Lett. B 211 (1988) 239 [INSPIRE].
  11. [11]
    P. Bruni and G. Ingelman, Diffractive hard scattering at ep and \( p\overline{p} \) colliders, Conf. Proc. C 930722 (1993) 595 [INSPIRE].Google Scholar
  12. [12]
    T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4, Comput. Phys. Commun. 82 (1994) 74 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    B.E. Cox and J.R. Forshaw, POMWIG: HERWIG for diffractive interactions, Comput. Phys. Commun. 144 (2002) 104 [hep-ph/0010303] [INSPIRE].
  14. [14]
    G. Corcella et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].
  15. [15]
    T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].ADSGoogle Scholar
  16. [16]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    W. Buchmüller and A. Hebecker, A Parton model for diffractive processes in deep inelastic scattering, Phys. Lett. B 355 (1995) 573 [hep-ph/9504374] [INSPIRE].
  18. [18]
    A. Edin, G. Ingelman and J. Rathsman, Soft color interactions as the origin of rapidity gaps in DIS, Phys. Lett. B 366 (1996) 371 [hep-ph/9508386] [INSPIRE].
  19. [19]
    Y.L. Dokshitzer, V.A. Khoze and T. Sjöstrand, Rapidity gaps in Higgs production, Phys. Lett. B 274 (1992) 116 [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    J.D. Bjorken, Rapidity gaps and jets as a new-physics signature in very-high-energy hadron-hadron collisions, Phys. Rev. D 47 (1993) 101 [INSPIRE].ADSGoogle Scholar
  21. [21]
    CDF collaboration, T. Affolder et al., Diffractive dijets with a leading antiproton in \( \overline{p}p \) collisions at \( \sqrt{s}=1800 \) GeV, Phys. Rev. Lett. 84 (2000) 5043 [INSPIRE].
  22. [22]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  23. [23]
    ZEUS and H1 collaborations, F.D. Aaron et al., Combined inclusive diffractive cross sections measured with forward proton spectrometers in deep inelastic ep scattering at HERA, Eur. Phys. J. C 72 (2012) 2175 [arXiv:1207.4864] [INSPIRE].
  24. [24]
    G.A. Schuler and T. Sjöstrand, Hadronic diffractive cross-sections and the rise of the total cross-section, Phys. Rev. D 49 (1994) 2257 [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Bruni and G. Ingelman, Diffractive W and Z production at pp colliders and the Pomeron parton content, Phys. Lett. B 311 (1993) 317 [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    H. Jung, Hard diffractive scattering in high-energy ep collisions and the Monte Carlo generator RAPGAP, Comput. Phys. Commun. 86 (1995) 147 [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    A. Donnachie and P.V. Landshoff, Elastic Scattering and Diffraction Dissociation, Nucl. Phys. B 244 (1984) 322 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    R. Ciesielski and K. Goulianos, MBR Monte Carlo Simulation in PYTHIA8, PoS (ICHEP2012) 301 [arXiv:1205.1446] [INSPIRE].
  29. [29]
    H1 collaboration, A. Aktas et al., Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA, Eur. Phys. J. C 48 (2006) 715 [hep-ex/0606004] [INSPIRE].
  30. [30]
    H1 collaboration, A. Aktas et al., Diffractive deep-inelastic scattering with a leading proton at HERA, Eur. Phys. J. C 48 (2006) 749 [hep-ex/0606003] [INSPIRE].
  31. [31]
    H1 collaboration, A. Aktas et al., Dijet Cross Sections and Parton Densities in Diffractive DIS at HERA, JHEP 10 (2007) 042 [arXiv:0708.3217] [INSPIRE].
  32. [32]
    L. Alvero, J.C. Collins, J. Terron and J.J. Whitmore, Diffractive production of jets and weak bosons and tests of hard scattering factorization, Phys. Rev. D 59 (1999) 074022 [hep-ph/9805268] [INSPIRE].
  33. [33]
    A. Donnachie and P.V. Landshoff, Hard Diffraction: Production of High p T Jets, W or Z and Drell-Yan Pairs, Nucl. Phys. B 303 (1988) 634 [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    A.D. Martin, M.G. Ryskin and G. Watt, Diffractive parton distributions from H1 data, Phys. Lett. B 644 (2007) 131 [hep-ph/0609273] [INSPIRE].
  35. [35]
    ZEUS collaboration, S. Chekanov et al., A QCD analysis of ZEUS diffractive data, Nucl. Phys. B 831 (2010) 1 [arXiv:0911.4119] [INSPIRE].
  36. [36]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
  37. [37]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    ATLAS collaboration, Measurement of the Inelastic Proton-Proton Cross-Section at \( \sqrt{s}=7 \) TeV with the ATLAS Detector,Nature Commun. 2(2011) 463 [arXiv:1104.0326] [INSPIRE].
  40. [40]
    ATLAS collaboration, Rapidity gap cross sections measured with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 1926 [arXiv:1201.2808] [INSPIRE].
  41. [41]
    ATLAS collaboration, Dijet production in \( \sqrt{s}=7 \) TeV pp collisions with large rapidity gaps at the ATLAS experiment, Phys. Lett. B 754 (2016) 214 [arXiv:1511.00502] [INSPIRE].
  42. [42]
    CMS collaboration, Forward Energy Flow, Central Charged-Particle Multiplicities and Pseudorapidity Gaps in W and Z Boson Events from pp Collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 72 (2012) 1839 [arXiv:1110.0181] [INSPIRE].
  43. [43]
    CMS collaboration, Observation of a diffractive contribution to dijet production in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 87 (2013) 012006 [arXiv:1209.1805] [INSPIRE].
  44. [44]
    CMS collaboration, Measurement of diffraction dissociation cross sections in pp collisions at \( \sqrt{s}=7 \) TeV,Phys. Rev. D 92 (2015) 012003 [arXiv:1503.08689] [INSPIRE].
  45. [45]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    CDF collaboration, T. Aaltonen et al., Diffractive W and Z Production at the Fermilab Tevatron, Phys. Rev. D 82 (2010) 112004 [arXiv:1007.5048] [INSPIRE].
  47. [47]
    CDF collaboration, D. Acosta et al., Diffractive dijet production at \( \sqrt{s}=630 \) GeV and 1800 GeV at the Fermilab Tevatron, Phys. Rev. Lett. 88 (2002) 151802 [hep-ex/0109025] [INSPIRE].
  48. [48]
    CDF collaboration, T. Aaltonen et al., Diffractive Dijet Production in pp Collisions at \( \sqrt{s}=1.96 \) TeV,Phys. Rev. D 86 (2012) 032009 [arXiv:1206.3955] [INSPIRE].
  49. [49]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Theoretical Particle Physics, Department of Astronomy and Theoretical PhysicsLund UnicersityLundSweden

Personalised recommendations