Journal of High Energy Physics

, 2016:140 | Cite as

Sharpening the weak gravity conjecture with dimensional reduction

  • Ben Heidenreich
  • Matthew ReeceEmail author
  • Tom Rudelius
Open Access
Regular Article - Theoretical Physics


We investigate the behavior of the Weak Gravity Conjecture (WGC) under toroidal compactification and RG flows, finding evidence that WGC bounds for single photons become weaker in the infrared. By contrast, we find that a photon satisfying the WGC will not necessarily satisfy it after toroidal compactification when black holes charged under the Kaluza-Klein photons are considered. Doing so either requires an infinite number of states of different charges to satisfy the WGC in the original theory or a restriction on allowed compactification radii. These subtleties suggest that if the Weak Gravity Conjecture is true, we must seek a stronger form of the conjecture that is robust under compactification. We propose a “Lattice Weak Gravity Conjecture” that meets this requirement: a superextremal particle should exist for every charge in the charge lattice. The perturbative heterotic string satisfies this conjecture. We also use compactification to explore the extent to which the WGC applies to axions. We argue that gravitational instanton solutions in theories of axions coupled to dilaton-like fields are analogous to extremal black holes, motivating a WGC for axions. This is further supported by a match between the instanton action and that of wrapped black branes in a higher-dimensional UV completion.


Superstrings and Heterotic Strings Models of Quantum Gravity Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
  2. [2]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    T. Rudelius, On the possibility of large axion moduli spaces, JCAP 04 (2015) 049 [arXiv:1409.5793] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    T.C. Bachlechner, C. Long and L. McAllister, Planckian axions in string theory, JHEP 12 (2015) 042 [arXiv:1412.1093] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP 09 (2015) 020 [arXiv:1503.00795] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, JHEP 01 (2016) 091 [arXiv:1503.07853] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp: evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett. B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, arXiv:1504.00659 [INSPIRE].
  13. [13]
    D. Junghans, Large-field inflation with multiple axions and the weak gravity conjecture, arXiv:1504.03566 [INSPIRE].
  14. [14]
    B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP 12 (2015) 108 [arXiv:1506.03447] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    E. Palti, On natural inflation and moduli stabilisation in string theory, JHEP 10 (2015) 188 [arXiv:1508.00009] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    L. Susskind, Trouble for remnants, hep-th/9501106 [INSPIRE].
  19. [19]
    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    B. Heidenreich, Notes on the weak gravity conjecture, unpublished (2013).Google Scholar
  22. [22]
    J. Polchinski, Monopoles, duality and string theory, Int. J. Mod. Phys. A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  23. [23]
    Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    G.W. Gibbons, Antigravitating black hole solitons with scalar hair in N = 4 supergravity, Nucl. Phys. B 207 (1982) 337 [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    G.W. Gibbons and K.-i. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [INSPIRE].
  28. [28]
    G.T. Horowitz and A. Strominger, Black strings and p-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    J.X. Lu, ADM masses for black strings and p-branes, Phys. Lett. B 313 (1993) 29 [hep-th/9304159] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    M.J. Duff and J.X. Lu, Black and super p-branes in diverse dimensions, Nucl. Phys. B 416 (1994) 301 [hep-th/9306052] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    M.J. Duff, H. Lü and C.N. Pope, The black branes of M-theory, Phys. Lett. B 382 (1996) 73 [hep-th/9604052] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    R.d. Sorkin, Kaluza-Klein monopole, Phys. Rev. Lett. 51 (1983) 87 [INSPIRE].
  33. [33]
    D.J. Gross and M.J. Perry, Magnetic monopoles in Kaluza-Klein theories, Nucl. Phys. B 226 (1983) 29 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    G.T. Horowitz and K. Maeda, Inhomogeneous near extremal black branes, Phys. Rev. D 65 (2002) 104028 [hep-th/0201241] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  36. [36]
    D.N. Page, Classical stability of round and squashed seven spheres in eleven-dimensional supergravity, Phys. Rev. D 28 (1983) 2976 [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    D. Marolf, Chern-Simons terms and the three notions of charge, in the proceedings of the International Conference dedicated to the memory of Professor Efim Fradkin, June 5-10, Moscow, Russia (2000), hep-th/0006117 [INSPIRE].
  38. [38]
    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 1. The free heterotic string, Nucl. Phys. B 256 (1985) 253 [INSPIRE].
  39. [39]
    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys. B 267 (1986) 75 [INSPIRE].
  40. [40]
    X.-G. Wen and E. Witten, Electric and magnetic charges in superstring models, Nucl. Phys. B 261 (1985) 651 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    N. Arkani-Hamed, H.-C. Cheng, P. Creminelli and L. Randall, Extra natural inflation, Phys. Rev. Lett. 90 (2003) 221302 [hep-th/0301218] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].
  44. [44]
    N. Arkani-Hamed, S. Dubovsky, A. Nicolis and G. Villadoro, Quantum horizons of the standard model landscape, JHEP 06 (2007) 078 [hep-th/0703067] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and string theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    K.-M. Lee, Wormholes and Goldstone bosons, Phys. Rev. Lett. 61 (1988) 263 [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    S.B. Giddings and A. Strominger, String wormholes, Phys. Lett. B 230 (1989) 46 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  48. [48]
    S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys. B 329 (1990) 387 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys. B 325 (1989) 687 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  50. [50]
    N. Arkani-Hamed, J. Orgera and J. Polchinski, Euclidean wormholes in string theory, JHEP 12 (2007) 018 [arXiv:0705.2768] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    M. Gutperle and W. Sabra, Instantons and wormholes in Minkowski and (A)dS spaces, Nucl. Phys. B 647 (2002) 344 [hep-th/0206153] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    E. Bergshoeff, A. Collinucci, U. Gran, D. Roest and S. Vandoren, Non-extremal D-instantons, JHEP 10 (2004) 031 [hep-th/0406038] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    E. Bergshoeff, A. Collinucci, U. Gran, D. Roest and S. Vandoren, Non-extremal instantons and wormholes in string theory, Fortsch. Phys. 53 (2005) 990 [hep-th/0412183] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  54. [54]
    T. Banks, M. Johnson and A. Shomer, A note on gauge theories coupled to gravity, JHEP 09 (2006) 049 [hep-th/0606277] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    C. Cheung and G.N. Remmen, Infrared consistency and the weak gravity conjecture, JHEP 12 (2014) 087 [arXiv:1407.7865] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    B. Bellazzini, C. Cheung and G.N. Remmen, Quantum gravity constraints from unitarity and analyticity, arXiv:1509.00851 [INSPIRE].
  57. [57]
    Y. Nakayama and Y. Nomura, Weak gravity conjecture in the AdS/CFT correspondence, Phys. Rev. D 92 (2015) 126006 [arXiv:1509.01647] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeU.S.A.

Personalised recommendations