Advertisement

Journal of High Energy Physics

, 2016:112 | Cite as

New supersymmetric vacua on solvmanifolds

  • David AndriotEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We obtain new supersymmetric flux vacua of type II supergravities on fourdimensional Minkowski times six-dimensional solvmanifolds. The orientifold O 4, O 5, O 6, O 7, or O 8-planes and D-branes are localized. All vacua are in addition not T-dual to a vacuum on the torus. The corresponding solvmanifolds are proven to be Calabi-Yau, with explicit metrics. Other Ricci flat solvmanifolds are shown to be only Kähler.

Keywords

Flux compactifications Superstring Vacua Differential and Algebraic Geometry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].CrossRefMathSciNetzbMATHGoogle Scholar
  4. [4]
    M. Gualtieri, Generalized complex geometry, math/0401221.
  5. [5]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of \( \mathcal{N}=1 \) vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A Scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    M. Graña, R. Minasian, H. Triendl and T. Van Riet, Quantization problem in Scherk-Schwarz compactifications, Phys. Rev. D 88 (2013) 085018 [arXiv:1305.0785] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. Koerber, Lectures on Generalized Complex Geometry for Physicists, Fortsch. Phys. 59 (2011) 169 [arXiv:1006.1536] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    D. Andriot, String theory flux vacua on twisted tori and Generalized Complex Geometry, Ph.D. Thesis, LPTHE, Paris France (2010).Google Scholar
  12. [12]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    G. Villadoro and F. Zwirner, Beyond Twisted Tori, Phys. Lett. B 652 (2007) 118 [arXiv:0706.3049] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    P. Koerber, Stable D-branes, calibrations and generalized Calabi-Yau geometry, JHEP 08 (2005) 099 [hep-th/0506154] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general \( \mathcal{N}=1 \) backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    P. Koerber and L. Martucci, Deformations of calibrated D-branes in flux generalized complex manifolds, JHEP 12 (2006) 062 [hep-th/0610044] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    F. Gmeiner and F. Witt, Calibrations and T-duality, Commun. Math. Phys. 283 (2008) 543 [math/0605710] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    L. Martucci, Electrified branes, JHEP 02 (2012) 097 [arXiv:1110.0627] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of type IIB supergravity, Class. Quant. Grav. 23 (2006) 4693 [hep-th/0510125] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    M.B. Djiadeu Ngaha, M. Boucetta and J. Wouafo Kamga, The signature of the Ricci curvature of left-invariant Riemannian metrics on nilpotent Lie groups, arXiv:1507.02239.
  24. [24]
    C. Bock, On Low-Dimensional Solvmanifolds, arXiv:0903.2926.
  25. [25]
    S. Console and M. Macri, Lattices, cohomology and models of six dimensional almost abelian solvmanifolds, arXiv:1206.5977 [INSPIRE].
  26. [26]
    S. Console, A. Fino and K. Hisashi, Modifications and Cohomologies of Solvmanifolds, arXiv:1301.6042.
  27. [27]
    A. Daniele and K. Hisashi, Cohomologies of deformations of solvmanifolds and closedness of some properties, arXiv:1305.6709.
  28. [28]
    G.R. Cavalcanti and M. Gualtieri, Generalized complex structures on nilmanifolds, math/0404451.
  29. [29]
    D. Andriot, New supersymmetric flux vacua with intermediate SU(2) structure, JHEP 08 (2008) 096 [arXiv:0804.1769] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    D. Andriot, New supersymmetric flux vacua of type-II string theory and Generalized Complex Geometry, Fortsch. Phys. 57 (2009) 485 [arXiv:0901.1128] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    D. Andriot and A. Betz, Supersymmetry with non-geometric fluxes, or a β-twist in Generalized Geometry and Dirac operator, JHEP 04 (2015) 006 [arXiv:1411.6640] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  32. [32]
    P.G. Cámara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    D.J. Smith, Intersecting brane solutions in string and M-theory, Class. Quant. Grav. 20 (2003) R233 [hep-th/0210157] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  34. [34]
    S. Arapoglu, N.S. Deger and A. Kaya, A Note on supergravity solutions for partially localized intersecting branes, Phys. Lett. B 578 (2004) 203 [hep-th/0306040] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    F. Hassler and D. Lüst, Consistent Compactification of Double Field Theory on Non-geometric Flux Backgrounds, JHEP 05 (2014) 085 [arXiv:1401.5068] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    A. Fino and L. Ugarte, On the geometry underlying supersymmetric flux vacua with intermediate SU(2) structure, Class. Quant. Grav. 28 (2011) 075004 [arXiv:1007.1578] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    S.-C. Lau, L.-S. Tseng and S.-T. Yau, Non-Kähler SYZ Mirror Symmetry, Commun. Math. Phys. 340 (2015) 145 [arXiv:1409.2765] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  39. [39]
    D. Lüst, Compactification of Ten-dimensional Superstring Theories Over Ricci Flat Coset Spaces, Nucl. Phys. B 276 (1986) 220 [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS 4 compactifications on cosets, interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    F. Marchesano and W. Schulgin, Non-geometric fluxes as supergravity backgrounds, Phys. Rev. D 76 (2007) 041901 [arXiv:0704.3272] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String Inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  45. [45]
    D. Andriot, A no-go theorem for monodromy inflation, arXiv:1510.02005 [INSPIRE].
  46. [46]
    M. Gualtieri, Generalized Kähler geometry, arXiv:1007.3485 [INSPIRE].
  47. [47]
    A. Sevrin and D.C. Thompson, N = (2, 2) Non-Linear σ-Models: A Synopsis, PoS(Corfu2012)097 [arXiv:1305.4853] [INSPIRE].
  48. [48]
    D. Terryn, The generalised complex geometry of Wess-Zumino-Witten models, arXiv:1301.0301 [INSPIRE].
  49. [49]
    A. Fino and A. Tomassini, Non Kaehler solvmanifolds with generalized Kaehler structure, math/0702164.
  50. [50]
    A. Fino, A. Otal and L. Ugarte, Six dimensional solvmanifolds with holomorphically trivial canonical bundle, arXiv:1401.0512.
  51. [51]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    A. Fino and L. Vezzoni, Special Hermitian metrics on compact solvmanifolds, J. Geom. Phys. 91 (2015) 40 [arXiv:1502.03476].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    Y.-H. He, S.-J. Lee, A. Lukas and C. Sun, Heterotic Model Building: 16 Special Manifolds, JHEP 06 (2014) 077 [arXiv:1309.0223] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    K. Hasegawa, Complex and Kähler structures on compact solvmanifolds, J. Sympl. Geom. 3 (2005) 749 [arXiv:0804.4223].CrossRefzbMATHGoogle Scholar
  56. [56]
    L. Bedulli and L. Vezzoni, The Ricci tensor of SU(3)-manifolds, J. Geom. Phys. 57 (2007) 1125 [math/0606786].CrossRefADSMathSciNetzbMATHGoogle Scholar
  57. [57]
    D. Cassani, Reducing democratic type-II supergravity on SU(3) × SU(3) structures, JHEP 06 (2008) 027 [arXiv:0804.0595] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    J. Held, D. Lüst, F. Marchesano and L. Martucci, DWSB in heterotic flux compactifications, JHEP 06 (2010) 090 [arXiv:1004.0867] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    G. Solard, A note on the Ricci scalar of six dimensional manifold with SU(2) structure, arXiv:1601.04716 [INSPIRE].
  61. [61]
    U.H. Danielsson, G. Dibitetto, M. Fazzi and T. Van Riet, A note on smeared branes in flux vacua and gauged supergravity, JHEP 04 (2014) 025 [arXiv:1311.6470] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    L. Martucci, On moduli and effective theory of N = 1 warped flux compactifications, JHEP 05 (2009) 027 [arXiv:0902.4031] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  63. [63]
    L. Martucci, Warping the Kähler potential of F-theory/IIB flux compactifications, JHEP 03 (2015) 067 [arXiv:1411.2623] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  64. [64]
    J. Blåbäck, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic Duals of D = 3 N = 4 Superconformal Field Theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  66. [66]
    B. Assel, C. Bachas, J. Estes and J. Gomis, IIB Duals of D = 3 N = 4 Circular Quivers, JHEP 12 (2012) 044 [arXiv:1210.2590] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  67. [67]
    A. Rota and A. Tomasiello, AdS 4 compactifications of AdS 7 solutions in type-II supergravity, JHEP 07 (2015) 076 [arXiv:1502.06622] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  68. [68]
    M. Larfors, Revisiting toric SU(3) structures, Fortsch. Phys. 61 (2013) 1031 [arXiv:1309.2953] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  69. [69]
    P. Kaste, R. Minasian and A. Tomasiello, Supersymmetric M-theory compactifications with fluxes on seven-manifolds and G structures, JHEP 07 (2003) 004 [hep-th/0303127] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  70. [70]
    A. Fino and A. Raffero, Coupled SU(3)-structures and Supersymmetry, Symmetry 7 (2015) 625 [arXiv:1505.01655] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  71. [71]
    M. Freibert and A. Swann, Solvable groups and a shear construction, arXiv:1506.00207.
  72. [72]
    V. Manero, Construction of Lie algebras with special G2-structures, arXiv:1507.07352.
  73. [73]
    D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP 12 (2013) 083 [arXiv:1306.4381] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  75. [75]
    D. Geissbühler, D. Marqués, C. Núñez and V. Penas, Exploring Double Field Theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutPotsdam-GolmGermany
  2. 2.Institut für Mathematik, Humboldt-Universität zu Berlin, IRIS-AdlershofBerlinGermany

Personalised recommendations