Journal of High Energy Physics

, 2016:105 | Cite as

Precision calculation of 1/4-BPS Wilson loops in AdS5×S5

  • V. Forini
  • V. Giangreco M. Puletti
  • L. Griguolo
  • D. Seminara
  • E. Vescovi
Open Access
Regular Article - Theoretical Physics


We study the strong coupling behaviour of 1/4-BPS circular Wilson loops (a family of “latitudes”) in \( \mathcal{N}=4 \) Super Yang-Mills theory, computing the one-loop corrections to the relevant classical string solutions in AdS5 ×S5. Supersymmetric localization provides an exact result that, in the large ’t Hooft coupling limit, should be reproduced by the sigma-model approach. To avoid ambiguities due to the absolute normalization of the string partition function, we compare the ratio between the generic latitude and the maximal 1/2-BPS circle: any measure-related ambiguity should simply cancel in this way. We use the Gel’fand-Yaglom method with Dirichlet boundary conditions to calculate the relevant functional determinants, that present some complications with respect to the standard circular case. After a careful numerical evaluation of our final expression we still find disagreement with the localization answer: the difference is encoded into a precise “remainder function”. We comment on the possible origin and resolution of this discordance.


Wilson ’t Hooft and Polyakov loops AdS-CFT Correspondence Sigma Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The operator product expansion for Wilson loops and surfaces in the large-N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5 : semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    M. Sakaguchi and K. Yoshida, A semiclassical string description of Wilson loop with local operators, Nucl. Phys. B 798 (2008) 72 [arXiv:0709.4187] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    C. Kristjansen and Y. Makeenko, More about One-Loop Effective Action of Open Superstring in AdS 5 × S 5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    E.I. Buchbinder and A.A. Tseytlin, 1/N correction in the D3-brane description of a circular Wilson loop at strong coupling, Phys. Rev. D 89 (2014) 126008 [arXiv:1404.4952] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Bergamin and A.A. Tseytlin, Heat kernels on cone of AdS 2 and k-wound circular Wilson loop in AdS 5 × S 5 superstring, arXiv:1510.06894 [INSPIRE].
  12. [12]
    A. Faraggi, J.T. Liu, L.A. Pando Zayas and G. Zhang, One-loop structure of higher rank Wilson loops in AdS/CFT, Phys. Lett. B 740 (2015) 218 [arXiv:1409.3187] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : Some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model, JHEP 09 (2006) 004 [hep-th/0605151] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    S. Förste, D. Ghoshal and S. Theisen, Stringy corrections to the Wilson loop in N = 4 super Yang-Mills theory, JHEP 08 (1999) 013 [hep-th/9903042] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    S. Förste, D. Ghoshal and S. Theisen, Wilson loop via AdS/CFT duality, hep-th/0003068 [INSPIRE].
  21. [21]
    R. Roiban, A. Tirziu and A.A. Tseytlin, Two-loop world-sheet corrections in AdS 5 × S 5 superstring, JHEP 07 (2007) 056 [arXiv:0704.3638] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    V. Forini, Quark-antiquark potential in AdS at one loop, JHEP 11 (2010) 079 [arXiv:1009.3939] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, More supersymmetric Wilson loops, Phys. Rev. D 76 (2007) 107703 [arXiv:0704.2237] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Wilson loops: from four-dimensional SYM to two-dimensional YM, Phys. Rev. D 77 (2008) 047901 [arXiv:0707.2699] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    D. Young, BPS Wilson Loops on S 2 at Higher Loops, JHEP 05 (2008) 077 [arXiv:0804.4098] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    A. Bassetto, L. Griguolo, F. Pucci and D. Seminara, Supersymmetric Wilson loops at two loops, JHEP 06 (2008) 083 [arXiv:0804.3973] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    I. Gelfand and A. Yaglom, Integration in functional spaces and it applications in quantum physics, J. Math. Phys. 1 (1960) 48.CrossRefADSGoogle Scholar
  30. [30]
    R. Forman, Functional determinants and geometry, Invent. Math. 88 (1987) 447.CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    R. Forman, Functional determinants and geometry (Erratum), Invent. Math. 108 (1992) 453.CrossRefADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    A.J. McKane and M.B. Tarlie, Regularization of functional determinants using boundary perturbations, J. Phys. A 28 (1995) 6931 [cond-mat/9509126] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    K. Kirsten and A.J. McKane, Functional determinants by contour integration methods, Annals Phys. 308 (2003) 502 [math-ph/0305010] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  34. [34]
    K. Kirsten and A.J. McKane, Functional determinants for general Sturm-Liouville problems, J. Phys. A 37 (2004) 4649 [math-ph/0403050] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    K. Kirsten and P. Loya, Computation of determinants using contour integrals, Am. J. Phys. 76 (2008) 60 [arXiv:0707.3755] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    S.A. Frolov, I.Y. Park and A.A. Tseytlin, On one-loop correction to energy of spinning strings in S 5, Phys. Rev. D 71 (2005) 026006 [hep-th/0408187] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Dekel and T. Klose, Correlation Function of Circular Wilson Loops at Strong Coupling, JHEP 11 (2013) 117 [arXiv:1309.3203] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    A. Miwa, Broken zero modes of a string world sheet and a correlation function between a 1/4 BPS Wilson loop and a 1/2 BPS local operator, Phys. Rev. D 91 (2015) 106003 [arXiv:1502.04299] [INSPIRE].ADSGoogle Scholar
  39. [39]
    N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    V. Forini, V.G.M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Remarks on the geometrical properties of semiclassically quantized strings, J. Phys. A 48 (2015) 475401 [arXiv:1507.01883] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    A.R. Kavalov, I.K. Kostov and A.G. Sedrakian, Dirac and Weyl Fermion Dynamics on Two-dimensional Surface, Phys. Lett. B 175 (1986) 331 [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    A.G. Sedrakian and R. Stora, Dirac and Weyl Fermions Coupled to Two-dimensional Surfaces: Determinants, Phys. Lett. B 188 (1987) 442 [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    F. Langouche and H. Leutwyler, Two-dimensional fermion determinants as Wess-Zumino actions, Phys. Lett. B 195 (1987) 56 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    F. Langouche and H. Leutwyler, Weyl fermions on strings embedded in three-dimensions, Z. Phys. C 36 (1987) 473 [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    F. Langouche and H. Leutwyler, Anomalies generated by extrinsic curvature, Z. Phys. C 36 (1987) 479 [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    C. Ferreira and J.L. López, Asymptotic expansions of the Hurwitz-Lerch zeta function, J. Math. Anal. Appl. 298 (2004) 210.CrossRefMathSciNetzbMATHGoogle Scholar
  47. [47]
    S. Giombi, R. Ricci, R. Roiban, A.A. Tseytlin and C. Vergu, Quantum AdS 5 × S 5 superstring in the AdS light-cone gauge, JHEP 03 (2010) 003 [arXiv:0912.5105] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  48. [48]
    T. McLoughlin, R. Roiban and A.A. Tseytlin, Quantum spinning strings in AdS 4 × CP 3 : Testing the Bethe Ansatz proposal, JHEP 11 (2008) 069 [arXiv:0809.4038] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    N. Sakai and Y. Tanii, Supersymmetry in Two-dimensional Anti-de Sitter Space, Nucl. Phys. B 258 (1985) 661 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  50. [50]
    G.V. Dunne and K. Kirsten, Functional determinants for radial operators, J. Phys. A 39 (2006) 11915 [hep-th/0607066] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    K. Kirsten, Functional determinants in higher dimensions using contour integrals, arXiv:1005.2595 [INSPIRE].
  52. [52]
    G.V. Dunne, Functional determinants in quantum field theory, J. Phys. A 41 (2008) 304006 [arXiv:0711.1178] [INSPIRE].MathSciNetGoogle Scholar
  53. [53]
    M. Beccaria, V. Forini, A. Tirziu and A.A. Tseytlin, Structure of large spin expansion of anomalous dimensions at strong coupling, Nucl. Phys. B 812 (2009) 144 [arXiv:0809.5234] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    M. Beccaria, G.V. Dunne, V. Forini, M. Pawellek and A.A. Tseytlin, Exact computation of one-loop correction to energy of spinning folded string in AdS 5 × S 5, J. Phys. A 43 (2010) 165402 [arXiv:1001.4018] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    V. Forini, V.G.M. Puletti and O. Ohlsson Sax, The generalized cusp in AdS 4 × CP 3 and more one-loop results from semiclassical strings, J. Phys. A 46 (2013) 115402 [arXiv:1204.3302] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    V. Forini, V.G.M. Puletti, M. Pawellek and E. Vescovi, One-loop spectroscopy of semiclassically quantized strings: bosonic sector, J. Phys. A 48 (2015) 085401 [arXiv:1409.8674] [INSPIRE].ADSMathSciNetGoogle Scholar
  57. [57]
    L. Bianchi, V. Forini and B. Hoare, Two-dimensional S-matrices from unitarity cuts, JHEP 07 (2013) 088 [arXiv:1304.1798] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    V. Forini, L. Bianchi and B. Hoare, Scattering and Unitarity Methods in Two Dimensions, in Proceedings, 1st Karl Schwarzschild Meeting on Gravitational Physics (KSM 2013), Frankfurt am Main Germany (2013), Springer Proc. Phys. 170 (2016) 169 [arXiv:1401.0448].
  59. [59]
    O.T. Engelund, R.W. McKeown and R. Roiban, Generalized unitarity and the worldsheet S matrix in AdS n × S n × M 10−2n, JHEP 08 (2013) 023 [arXiv:1304.4281] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  60. [60]
    R. Roiban, P. Sundin, A. Tseytlin and L. Wulff, The one-loop worldsheet S-matrix for the AdS n × S n × T 10−2n superstring, JHEP 08 (2014) 160 [arXiv:1407.7883] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    R. Rajaraman, Solitons and Instantons, North Holland, Amsterdam The Netherlands (1982).Google Scholar
  62. [62]
    D. Burghelea, L. Friedlander and T. Kappeler, On the determinant of elliptic differential and finite difference operators in vector bundles over S 1, Commun. Math. Phys. 138 (1991) 1.CrossRefADSMathSciNetzbMATHGoogle Scholar
  63. [63]
    D. Burghelea, L. Friedlander and T. Kappeler, On the determinant of elliptic boundary problems on a line segment, Proc. Am. Math. Soc. 123 (1995) 3027.CrossRefMathSciNetzbMATHGoogle Scholar
  64. [64]
    M. Lesch and J. Tolksdorf, On the determinant of one-dimensional elliptic boundary value problems, Commun. Math. Phys. 193 (1998) 643 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • V. Forini
    • 1
  • V. Giangreco M. Puletti
    • 2
  • L. Griguolo
    • 3
  • D. Seminara
    • 4
  • E. Vescovi
    • 1
  1. 1.Institut für Physik, Humboldt-Universität zu Berlin, IRIS AdlershofBerlinGermany
  2. 2.Science InstituteUniversity of IcelandReykjavikIceland
  3. 3.Dipartimento di Fisica e Scienze della Terra, Università di Parma and INFN Gruppo Collegato di ParmaParmaItaly
  4. 4.Dipartimento di Fisica, Università di Firenze and INFN Sezione di FirenzeSesto FiorentinoItaly

Personalised recommendations