Angular analysis of the B 0K *0 μ + μ decay using 3 fb−1 of integrated luminosity

Abstract

An angular analysis of the B 0K *0(→ K + π )μ + μ decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb−1 of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and CP asymmetries, taking account of possible contamination from decays with the K + π system in an S-wave configuration. The angular observables and their correlations are reported in bins of q 2, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for q 2-dependent decay amplitudes in the region 1.1 < q 2 < 6.0 GeV2/c 4, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of CP-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    LHCb collaboration, Differential branching fraction and angular analysis of the decay B 0K ∗0 μ + μ , JHEP 08 (2013) 131 [arXiv:1304.6325] [INSPIRE].

  2. [2]

    BaBar collaboration, B. Aubert et al., Measurements of branching fractions, rate asymmetries and angular distributions in the rare decays BKℓ + and BK * + , Phys. Rev. D 73 (2006) 092001 [hep-ex/0604007] [INSPIRE].

  3. [3]

    BaBar collaboration, J.P. Lees et al., Measurement of angular asymmetries in the decays BK * + , arXiv:1508.07960 [INSPIRE].

  4. [4]

    Belle collaboration, J.T. Wei et al., Measurement of the differential branching fraction and forward-backword asymmetry for BK (*) + , Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770] [INSPIRE].

  5. [5]

    CDF collaboration, T. Aaltonen et al., Measurements of the angular distributions in the decays BK (*) μ + μ at CDF, Phys. Rev. Lett. 108 (2012) 081807 [arXiv:1108.0695] [INSPIRE].

  6. [6]

    CMS collaboration, Angular analysis and branching fraction measurement of the decay B 0K ∗0 μ + μ , Phys. Lett. B 727 (2013) 77 [arXiv:1308.3409] [INSPIRE].

  7. [7]

    CMS collaboration, Angular analysis of the decay B 0K ∗0 μ + μ from pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 753 (2016) 424 [arXiv:1507.08126] [INSPIRE].

  8. [8]

    LHCb collaboration, Measurement of form-factor-independent observables in the decay B 0K *0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].

  9. [9]

    S. Descotes-Genon, J. Matias and J. Virto, Understanding the BK * μ + μ anomaly, Phys. Rev. D 88 (2013) 074002 [arXiv:1307.5683] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    W. Altmannshofer and D.M. Straub, New physics in BK * μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].

    Article  ADS  Google Scholar 

  11. [11]

    F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive bayesian analysis of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C 74 (2014) 2897 [Erratum ibid. C 74 (2014) 3179] [arXiv:1310.2478] [INSPIRE].

  12. [12]

    T. Hurth and F. Mahmoudi, On the LHCb anomaly in BK * + , JHEP 04 (2014) 097 [arXiv:1312.5267] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    S. Jäger and J. Martin Camalich, On BVℓℓ at small dilepton invariant mass, power corrections and new physics, JHEP 05 (2013) 043 [arXiv:1212.2263] [INSPIRE].

    Article  Google Scholar 

  14. [14]

    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, On the impact of power corrections in the prediction of BK * μ + μ observables, JHEP 12 (2014) 125 [arXiv:1407.8526] [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    J. Lyon and R. Zwicky, Resonances gone topsy turvy — The charm of QCD or new physics in bsℓ + ?, arXiv:1406.0566 [INSPIRE].

  16. [16]

    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μ L τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining hμ ± τ , BK * μ + μ and B + μ /BKe + e in a two-Higgs-doublet model with gauged L μ L τ , Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    R. Gauld, F. Goertz and U. Haisch, An explicit Z-boson explanation of the BK * μ + μ anomaly, JHEP 01 (2014) 069 [arXiv:1310.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    F. Mahmoudi, S. Neshatpour and J. Virto, BK * μ + μ optimised observables in the MSSM, Eur. Phys. J. C 74 (2014) 2927 [arXiv:1401.2145] [INSPIRE].

    Article  ADS  Google Scholar 

  21. [21]

    A. Datta, M. Duraisamy and D. Ghosh, Explaining the BK * μ + μ data with scalar interactions, Phys. Rev. D 89 (2014) 071501 [arXiv:1310.1937] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub and M. Wick, Symmetries and asymmetries of BK * μ + μ decays in the Standard Model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    F. Krüger and J. Matias, Probing new physics via the transverse amplitudes of B 0K *0(→ K π +) + at large recoil, Phys. Rev. D 71 (2005) 094009 [hep-ph/0502060] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    S. Descotes-Genon, J. Matias, M. Ramon and J. Virto, Implications from clean observables for the binned analysis of BK * μ + μ at large recoil, JHEP 01 (2013) 048 [arXiv:1207.2753] [INSPIRE].

    Article  ADS  Google Scholar 

  25. [25]

    F. Beaujean, M. Chrzaszcz, N. Serra and D. van Dyk, Extracting angular observables without a likelihood and applications to rare decays, Phys. Rev. D 91 (2015) 114012 [arXiv:1503.04100] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    A. Ali, P. Ball, L.T. Handoko and G. Hiller, A comparative study of the decays B → (K, K *) + in standard model and supersymmetric theories, Phys. Rev. D 61 (2000) 074024 [hep-ph/9910221] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    G. Kumar and N. Mahajan, BK * l + l : zeroes of angular observables as test of standard model, arXiv:1412.2955 [INSPIRE].

  28. [28]

    LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

  29. [29]

    LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].

  30. [30]

    R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [INSPIRE].

  31. [31]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. [33]

    I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].

    Article  ADS  Google Scholar 

  34. [34]

    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

    Article  ADS  Google Scholar 

  35. [35]

    P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].

    Article  ADS  Google Scholar 

  36. [36]

    Geant4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.

  37. [37]

    GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  38. [38]

    M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].

    Article  ADS  Google Scholar 

  39. [39]

    L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California U.S.A. (1984).

  40. [40]

    R.E. Schapire and Y. Freund, A decision-theoretic generalization of on-line learning and an application to boosting, J.. Comp. Syst. Sc. 55 (1997) 119.

  41. [41]

    LHCb collaboration, Search for the rare decays B 0 s  → μ + μ and B 0μ + μ , Phys. Lett. B 699 (2011) 330 [arXiv:1103.2465] [INSPIRE].

  42. [42]

    A. Blum, A. Kalai and J. Langford, Beating the hold-out: bounds for k-fold and progressive cross-validation, in the proceedings of the Twelfth annual conference on Computational Learning Theory (COLT ’99), July 6–9, Santa Cruz, U.S.A. (1999).

  43. [43]

    BaBar collaboration, B. Aubert et al., Measurement of decay amplitudes of BJ/ψK * , ψ(2S)K * and χ c1 K with an angular analysis, Phys. Rev. D 76 (2007) 031102 [arXiv:0704.0522] [INSPIRE].

  44. [44]

    Belle collaboration, K. Chilikin et al., Observation of a new charged charmoniumlike state in \( {\overline{B}}^0\to J/\psi {K}^{-}{\pi}^{+} \) decays, Phys. Rev. D 90 (2014) 112009 [arXiv:1408.6457] [INSPIRE].

  45. [45]

    LHCb collaboration, Measurement of the polarization amplitudes in B 0J/ψK *(892)0 decays, Phys. Rev. D 88 (2013) 052002 [arXiv:1307.2782] [INSPIRE].

  46. [46]

    LHCb collaboration, Measurement of the \( {B}_s^0\to J/\psi {\overline{K}}^{\ast 0} \) branching fraction and angular amplitudes, Phys. Rev. D 86 (2012) 071102 [arXiv:1208.0738] [INSPIRE].

  47. [47]

    D. Aston et al., A study of K π + scattering in the reaction K pK π + n at 11 GeV/c, Nucl. Phys. B 296 (1988) 493.

    Article  ADS  Google Scholar 

  48. [48]

    G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    B. Sen, M. Walker and M. Woodroofe, On the unified method with nuisance parameters, Stat. Sinica 19 (2009) 301.

    MathSciNet  MATH  Google Scholar 

  50. [50]

    J. Gratrex, M. Hopfer and R. Zwicky, Generalised helicity formalism, higher moments and the \( B\to {K}_{J_K}\left(\to K\pi \right){\overline{\ell}}_1{\ell}_2 \) angular distributions, arXiv:1506.03970 [INSPIRE].

  51. [51]

    B. Efron, Bootstrap methods: another look at the jackknife, Ann. Statist. 7 (1979) 1.

    Article  MathSciNet  MATH  Google Scholar 

  52. [52]

    F. Beaujean, C. Bobeth and S. Jahn, Constraints on tensor and scalar couplings from \( B\to K\overline{\mu}\mu \) and \( {B}_s\to \overline{\mu}\mu \), Eur. Phys. J. C 75 (2015) 456 [arXiv:1508.01526] [INSPIRE].

    Article  ADS  Google Scholar 

  53. [53]

    U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New physics reach of the decay mode \( \overline{B}\to {\overline{K}}^{\ast 0}{\ell}^{+}{\ell}^{-} \), JHEP 10 (2010) 056 [arXiv:1005.0571] [INSPIRE].

    Article  ADS  Google Scholar 

  54. [54]

    U. Egede, M. Patel and K.A. Petridis, Method for an unbinned measurement of the q 2 dependent decay amplitudes of \( {\overline{B}}^0\to {K}^{\ast 0}{\mu}^{+}{\mu}^{-} \) decays, JHEP 06 (2015) 084 [arXiv:1504.00574] [INSPIRE].

    Article  ADS  Google Scholar 

  55. [55]

    C.-D. Lu and W. Wang, Analysis of B → K * J (→)μ + μ in the higher kaon resonance region, Phys. Rev. D 85 (2012) 034014 [arXiv:1111.1513] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    LHCb collaboration, Measurement of the \( {\overline{B}}^0-{B}^0 \) and \( {\overline{B}}_s^0-{B}_s^0 \) production asymmetries in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 739 (2014) 218 [arXiv:1408.0275] [INSPIRE].

  57. [57]

    LHCb collaboration, Measurement of the semileptonic CP asymmetry in \( {B}^0-{\overline{B}}^0 \) mixing, Phys. Rev. Lett. 114 (2015) 041601 [arXiv:1409.8586] [INSPIRE].

  58. [58]

    LHCb collaboration, Measurement of CP asymmetry in D 0K K + and D 0π π + decays, JHEP 07 (2014) 041 [arXiv:1405.2797] [INSPIRE].

  59. [59]

    C. Bobeth, G. Hiller and D. van Dyk, The benefits of \( B\to {\overline{K}}^{\ast }{l}^{+}{l}^{-} \) decays at low recoil, JHEP 07 (2010) 098 [arXiv:1006.5013] [INSPIRE].

    Article  ADS  Google Scholar 

  60. [60]

    S. Jäger and J. Martin Camalich, Reassessing the discovery potential of the BK * + decays in the large-recoil region: SM challenges and BSM opportunities, Phys. Rev. D 93 (2016) 014028 [arXiv:1412.3183] [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    D. Das and R. Sinha, New physics effects and hadronic form factor uncertainties in BK * + , Phys. Rev. D 86 (2012) 056006 [arXiv:1205.1438] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Calculation of B 0K *0 μ + μ and B 0 s  → ϕμ + μ observables using form factors from lattice QCD, Phys. Rev. Lett. 112 (2014) 212003 [arXiv:1310.3887] [INSPIRE].

    Article  ADS  Google Scholar 

  63. [63]

    C. Hambrock, G. Hiller, S. Schacht and R. Zwicky, BK * form factors from flavor data to QCD and back, Phys. Rev. D 89 (2014) 074014 [arXiv:1308.4379] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    T. Hurth, F. Mahmoudi and S. Neshatpour, Global fits to bsℓℓ data and signs for lepton non-universality, JHEP 12 (2014) 053 [arXiv:1410.4545] [INSPIRE].

    Article  ADS  Google Scholar 

  65. [65]

    P. Ball and R. Zwicky, B d,s ρ, ω, K * , ϕ decay form-factors from light-cone sum rules revisited, Phys. Rev. D 71 (2005) 014029 [hep-ph/0412079] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    A. Bharucha, D.M. Straub and R. Zwicky, BVℓ + in the standard model from light-cone sum rules, arXiv:1503.05534 [INSPIRE].

  67. [67]

    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Lattice QCD calculation of form factors describing the rare decays BK * + and B s ϕℓ + , Phys. Rev. D 89 (2014) 094501 [arXiv:1310.3722] [INSPIRE].

    ADS  Google Scholar 

  68. [68]

    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Rare B decays using lattice QCD form factors, PoS(LATTICE2014)372 [arXiv:1501.00367] [INSPIRE].

  69. [69]

    A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.M. Wang, Charm-loop effect in BK (*) + and BK * γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].

    Article  ADS  Google Scholar 

  70. [70]

    S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of BK * ℓℓ observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794] [INSPIRE].

    Article  ADS  Google Scholar 

  71. [71]

    C. Bobeth, G. Hiller, D. van Dyk and C. Wacker, The Decay BKℓ + at Low Hadronic Recoil and Model-Independent ΔB = 1 Constraints, JHEP 01 (2012) 107 [arXiv:1111.2558] [INSPIRE].

    Article  ADS  Google Scholar 

  72. [72]

    M. Beneke, T. Feldmann and D. Seidel, Exclusive radiative and electroweak bd and bs penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173 [hep-ph/0412400] [INSPIRE].

    Article  ADS  Google Scholar 

  73. [73]

    A. Ali, G. Kramer and G.-h. Zhu, BK + + decay in soft-collinear effective theory, Eur. Phys. J. C 47 (2006) 625 [hep-ph/0601034] [INSPIRE].

  74. [74]

    LHCb, CMS collaboration, Observation of the rare B 0 s  → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors